fazliimam nielsr HF staff commited on
Commit
f8d17be
·
verified ·
1 Parent(s): 57d852e

Add task categories (#2)

Browse files

- Add task categories (befc10b16c4f403bbcb969e66c9734a3345c89a7)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -1,5 +1,7 @@
1
  ---
2
  license: apache-2.0
 
 
3
  dataset_info:
4
  - config_name: temporal_order
5
  features:
@@ -40,7 +42,6 @@ configs:
40
  path: timelapse_estimation/test-*
41
  ---
42
 
43
-
44
  ### **Dataset Description**
45
  The Temporal-VQA dataset is a challenging benchmark designed to evaluate the temporal reasoning capabilities of Multimodal Large Language Models (MLLMs) in tasks requiring visual temporal understanding. It emphasizes real-world temporal dynamics through two core evaluation tasks:-
46
  - **Temporal Order Understanding:** This task presents MLLMs with temporally consecutive frames from video sequences. The models must analyze and determine the correct sequence of events, assessing their ability to comprehend event progression over time.
@@ -58,7 +59,8 @@ import requests
58
  import os
59
  from io import BytesIO
60
 
61
- API_KEY = os.environ.get("API_KEY")
 
62
 
63
  def encode_image(image):
64
  buffer = BytesIO()
@@ -111,8 +113,6 @@ response = get_gpt_response(image1, image2, prompt)
111
  print(response)
112
  ```
113
 
114
-
115
-
116
  ### **Cite Us**
117
  ```
118
  @misc{imam2025multimodalllmsvisualtemporal,
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - image-text-to-text
5
  dataset_info:
6
  - config_name: temporal_order
7
  features:
 
42
  path: timelapse_estimation/test-*
43
  ---
44
 
 
45
  ### **Dataset Description**
46
  The Temporal-VQA dataset is a challenging benchmark designed to evaluate the temporal reasoning capabilities of Multimodal Large Language Models (MLLMs) in tasks requiring visual temporal understanding. It emphasizes real-world temporal dynamics through two core evaluation tasks:-
47
  - **Temporal Order Understanding:** This task presents MLLMs with temporally consecutive frames from video sequences. The models must analyze and determine the correct sequence of events, assessing their ability to comprehend event progression over time.
 
59
  import os
60
  from io import BytesIO
61
 
62
+ # Replace with your OpenAI API key
63
+ API_KEY = "YOUR_API_KEY"
64
 
65
  def encode_image(image):
66
  buffer = BytesIO()
 
113
  print(response)
114
  ```
115
 
 
 
116
  ### **Cite Us**
117
  ```
118
  @misc{imam2025multimodalllmsvisualtemporal,