{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "432e48eb", "metadata": {}, "outputs": [], "source": [ "!pip install awkward pyarrow datasets\n", "import awkward as ak\n", "import pyarrow as pa\n", "# import os\n", "# IF RUNNING LOCALLY AND DEFAULT CACHE IS EXCEEDING STORAGE:\n", "# SPECIFY HERE A VALID CACHE DIRECTORY WITH ENOUGH STORAGE FOR THE DATASETS\n", "# os.environ[\"HF_HOME\"] = \"/path/to/cache\"\n", "from datasets import load_dataset\n" ] }, { "cell_type": "markdown", "id": "2e31fb7f", "metadata": {}, "source": [ "One can download the whole dataset or parts of it using the `load_dataset` function. \n", "Specify the process folder to be inspected using `data_dir` or specify single parquet files using the `data_files` argument.\n", "Without these arguments the whole dataset will be accessible. \n", "Since the dataset is huge, streaming will be necessary to access it." ] }, { "cell_type": "code", "execution_count": 2, "id": "a938312a", "metadata": {}, "outputs": [], "source": [ "# load dataset of one process folder\n", "# if one wants to load the entire dataset, skip the data_dir or data_files argument\n", "dataset = load_dataset(\"fastmachinelearning/collide-1m\", \n", " data_dir=\"WJetsToLNu_13TeV-madgraphMLM-pythia8\",\n", " streaming=True)\n", "dataset = dataset[\"train\"]" ] }, { "cell_type": "markdown", "id": "743e1cbb", "metadata": {}, "source": [ " Here are the different columns that are available in the dataset: " ] }, { "cell_type": "code", "execution_count": 3, "id": "14412cb7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FullReco_PFCand_PT\n", "FullReco_PFCand_Eta\n", "FullReco_PFCand_Phi\n", "FullReco_PFCand_PID\n", "FullReco_PFCand_Charge\n", "FullReco_PFCand_Mass\n", "FullReco_PFCand_D0\n", "FullReco_PFCand_DZ\n", "FullReco_PFCand_ErrorD0\n", "FullReco_PFCand_ErrorDZ\n", "FullReco_PFCand_fUniqueID\n", "FullReco_PFCand_PuppiW\n", "FullReco_PUPPIPart_PT\n", "FullReco_PUPPIPart_Eta\n", "FullReco_PUPPIPart_Phi\n", "FullReco_PUPPIPart_Charge\n", "FullReco_PUPPIPart_Mass\n", "FullReco_PUPPIPart_PID\n", "FullReco_PUPPIPart_D0\n", "FullReco_PUPPIPart_DZ\n", "FullReco_PUPPIPart_ErrorD0\n", "FullReco_PUPPIPart_ErrorDZ\n", "FullReco_PUPPIPart_fUniqueID\n", "FullReco_PUPPIPart_PuppiW\n", "FullReco_Electron_PT\n", "FullReco_Electron_Eta\n", "FullReco_Electron_Phi\n", "FullReco_Electron_EhadOverEem\n", "FullReco_Electron_IsolationVarRhoCorr\n", "FullReco_MuonTight_PT\n", "FullReco_MuonTight_Eta\n", "FullReco_MuonTight_Phi\n", "FullReco_MuonTight_IsolationVarRhoCorr\n", "FullReco_PhotonTight_PT\n", "FullReco_PhotonTight_Eta\n", "FullReco_PhotonTight_Phi\n", "FullReco_JetAK4_PT\n", "FullReco_JetAK4_Eta\n", "FullReco_JetAK4_Phi\n", "FullReco_JetAK4_Mass\n", "FullReco_JetAK4_BTag\n", "FullReco_JetAK4_BTagPhys\n", "FullReco_JetAK4_Charge\n", "FullReco_JetAK4_Constituents\n", "FullReco_JetAK8_PT\n", "FullReco_JetAK8_Eta\n", "FullReco_JetAK8_Phi\n", "FullReco_JetAK8_Mass\n", "FullReco_JetAK8_BTag\n", "FullReco_JetAK8_BTagPhys\n", "FullReco_JetAK8_Charge\n", "FullReco_JetPuppiAK4_PT\n", "FullReco_JetPuppiAK4_Eta\n", "FullReco_JetPuppiAK4_Phi\n", "FullReco_JetPuppiAK4_Mass\n", "FullReco_JetPuppiAK4_BTag\n", "FullReco_JetPuppiAK4_BTagPhys\n", "FullReco_JetPuppiAK4_Charge\n", "FullReco_JetPuppiAK4_Constituents\n", "FullReco_JetPuppiAK8_PT\n", "FullReco_JetPuppiAK8_Eta\n", "FullReco_JetPuppiAK8_Phi\n", "FullReco_JetPuppiAK8_Mass\n", "FullReco_JetPuppiAK8_BTag\n", "FullReco_JetPuppiAK8_BTagPhys\n", "FullReco_JetPuppiAK8_Charge\n", "FullReco_MET_MET\n", "FullReco_MET_Phi\n", "FullReco_MET_Eta\n", "FullReco_PUPPIMET_MET\n", "FullReco_PUPPIMET_Phi\n", "FullReco_PUPPIMET_Eta\n", "FullReco_GenMissingET_MET\n", "FullReco_GenMissingET_Eta\n", "FullReco_GenMissingET_Phi\n", "FullReco_GenPart_PT\n", "FullReco_GenPart_Eta\n", "FullReco_GenPart_Phi\n", "FullReco_GenPart_PID\n", "FullReco_GenPart_M1\n", "FullReco_GenPart_M2\n", "FullReco_GenPart_D1\n", "FullReco_GenPart_D2\n", "FullReco_GenPart_Status\n", "FullReco_GenPart_IsPU\n", "FullReco_GenJetAK4_PT\n", "FullReco_GenJetAK4_Eta\n", "FullReco_GenJetAK4_Phi\n", "FullReco_GenJetAK4_Mass\n", "FullReco_GenJetAK8_PT\n", "FullReco_GenJetAK8_Eta\n", "FullReco_GenJetAK8_Phi\n", "FullReco_GenJetAK8_Mass\n", "FullReco_PrimaryVertex_X\n", "FullReco_PrimaryVertex_Y\n", "FullReco_PrimaryVertex_Z\n", "FullReco_PrimaryVertex_T\n", "FullReco_PrimaryVertex_SumPT2\n", "L1T_PFCand_PT\n", "L1T_PFCand_Eta\n", "L1T_PFCand_Phi\n", "L1T_PFCand_PID\n", "L1T_PFCand_Charge\n", "L1T_PFCand_Mass\n", "L1T_PFCand_D0\n", "L1T_PFCand_DZ\n", "L1T_PFCand_ErrorD0\n", "L1T_PFCand_ErrorDZ\n", "L1T_PFCand_fUniqueID\n", "L1T_PFCand_PuppiW\n", "L1T_PUPPIPart_PT\n", "L1T_PUPPIPart_Eta\n", "L1T_PUPPIPart_Phi\n", "L1T_PUPPIPart_Charge\n", "L1T_PUPPIPart_Mass\n", "L1T_PUPPIPart_PID\n", "L1T_PUPPIPart_D0\n", "L1T_PUPPIPart_DZ\n", "L1T_PUPPIPart_ErrorD0\n", "L1T_PUPPIPart_ErrorDZ\n", "L1T_PUPPIPart_fUniqueID\n", "L1T_PUPPIPart_PuppiW\n", "L1T_Electron_PT\n", "L1T_Electron_Eta\n", "L1T_Electron_Phi\n", "L1T_Electron_EhadOverEem\n", "L1T_Electron_IsolationVarRhoCorr\n", "L1T_MuonTight_PT\n", "L1T_MuonTight_Eta\n", "L1T_MuonTight_Phi\n", "L1T_MuonTight_IsolationVarRhoCorr\n", "L1T_PhotonTight_PT\n", "L1T_PhotonTight_Eta\n", "L1T_PhotonTight_Phi\n", "L1T_JetAK4_PT\n", "L1T_JetAK4_Eta\n", "L1T_JetAK4_Phi\n", "L1T_JetAK4_Mass\n", "L1T_JetAK4_BTag\n", "L1T_JetAK4_BTagPhys\n", "L1T_JetAK4_Charge\n", "L1T_JetAK4_Constituents\n", "L1T_JetAK8_PT\n", "L1T_JetAK8_Eta\n", "L1T_JetAK8_Phi\n", "L1T_JetAK8_Mass\n", "L1T_JetAK8_BTag\n", "L1T_JetAK8_BTagPhys\n", "L1T_JetAK8_Charge\n", "L1T_JetPuppiAK4_PT\n", "L1T_JetPuppiAK4_Eta\n", "L1T_JetPuppiAK4_Phi\n", "L1T_JetPuppiAK4_Mass\n", "L1T_JetPuppiAK4_BTag\n", "L1T_JetPuppiAK4_BTagPhys\n", "L1T_JetPuppiAK4_Charge\n", "L1T_JetPuppiAK4_Constituents\n", "L1T_JetPuppiAK8_PT\n", "L1T_JetPuppiAK8_Eta\n", "L1T_JetPuppiAK8_Phi\n", "L1T_JetPuppiAK8_Mass\n", "L1T_JetPuppiAK8_BTag\n", "L1T_JetPuppiAK8_BTagPhys\n", "L1T_JetPuppiAK8_Charge\n", "L1T_MET_MET\n", "L1T_MET_Phi\n", "L1T_MET_Eta\n", "L1T_PUPPIMET_MET\n", "L1T_PUPPIMET_Phi\n", "L1T_PUPPIMET_Eta\n" ] } ], "source": [ "cols = list(dataset.features.keys())\n", "for c in cols:\n", " print(c)" ] }, { "cell_type": "markdown", "id": "3f48be1e", "metadata": {}, "source": [ " The dataset will have one row for each event, one can access the respective next row by calling `row=next(iter(dataset))`. Once a row is loaded, one can easily access the respective features using `row['feature']`, where 'feature' is any of the above listed columns. Loading multiple rows at once might lead to memory issues. " ] }, { "cell_type": "code", "execution_count": 4, "id": "adb5ae4d", "metadata": {}, "outputs": [], "source": [ "row1 = next(iter(dataset))" ] }, { "cell_type": "code", "execution_count": 16, "id": "869dccac", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[0.291,\n", " 0.226,\n", " 0.454,\n", " 0.468,\n", " 0.412,\n", " 0.22,\n", " 0.755,\n", " 0.963,\n", " 0.484,\n", " 0.814,\n", " ...,\n", " 5.42,\n", " 0.735,\n", " 2.6,\n", " 1.99,\n", " 2.98,\n", " 2.21,\n", " 3.04,\n", " 1.14,\n", " 3.48]\n", "--------------------\n", "backend: cpu\n", "nbytes: 34.5 kB\n", "type: 4318 * float64" ], "text/plain": [ "
[1.47,\n", " 1.01,\n", " 1.14,\n", " 0.894,\n", " 0.905,\n", " 0.647,\n", " 1.15,\n", " 0.616,\n", " 0.736,\n", " 0.521,\n", " ...,\n", " 1.26,\n", " 2.95,\n", " 6.43,\n", " 1.82,\n", " 1.76,\n", " 2.72,\n", " 2.86,\n", " 1.29,\n", " 0.773]\n", "--------------------\n", "backend: cpu\n", "nbytes: 29.7 kB\n", "type: 3709 * float64" ], "text/plain": [ "