Datasets:
Upload COLLIDE-1m_streaming_classifier_tutorial.ipynb (#3)
Browse files- Upload COLLIDE-1m_streaming_classifier_tutorial.ipynb (db106de435c4ad0720add28db284f52497e00268)
Co-authored-by: Eric Moreno <[email protected]>
COLLIDE-1m_streaming_classifier_tutorial.ipynb
ADDED
|
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "d28f887e",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# COLLIDE-2V — Six‑Class Classifier\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"This notebook streams COLLIDE-1m (1 million event subset of COLLIDE-2V) dataset from the Hugging Face Hub and builds a **fixed, physics‑aware feature vector** per event from **FullReco** variables only:\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"**Per event features**\n",
|
| 13 |
+
"- **Particles (PUPPI, top‑20 by pT):** for each particle we keep *(pT, η, φ, charge, mass, PID, PuppiW)* → 7 × 20 = **140**\n",
|
| 14 |
+
"- **Jets (AK4, top‑4 by pT):** *(pT, η, φ, mass, btag, charge)* → 6 × 4 = **24**\n",
|
| 15 |
+
"- **Leading leptons/photons:** \n",
|
| 16 |
+
" - Electron: *(pT, η, φ, EhadOverEem, IsoRhoCorr)* → **5** \n",
|
| 17 |
+
" - MuonTight: *(pT, η, φ, IsoRhoCorr)* → **4** \n",
|
| 18 |
+
" - PhotonTight: *(pT, η, φ)* → **3**\n",
|
| 19 |
+
"- **MET:** *(PUPPIMET_MET, PUPPIMET_φ, MET_MET, MET_φ)* → **4**\n",
|
| 20 |
+
"- **Primary Vertex:** *(Z, SumPT2 of best PV)* → **2**\n",
|
| 21 |
+
"- **Counts:** *(N_PUPPIPart, N_JetAK4)* → **2**\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"Total vector length = **184**.\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"We then train a tiny MLP classifier on **six classes** (one per family):\n",
|
| 26 |
+
"- DY: `DY to ll`\n",
|
| 27 |
+
"- QCD: `QCD inclusive`\n",
|
| 28 |
+
"- SingleHiggs: `VBFHtautau`\n",
|
| 29 |
+
"- top: `tt all-lept`\n",
|
| 30 |
+
"- diboson: `WZ (semi-leptonic)`\n",
|
| 31 |
+
"- diHiggs: `HH bbtautau`\n",
|
| 32 |
+
"\n"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": null,
|
| 38 |
+
"id": "56d3eb16",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"# If needed (Colab/Kaggle/etc.). Comment out if your env already has these.\n",
|
| 43 |
+
"%pip -q install datasets==2.21.0 huggingface_hub==0.24.6 fsspec==2024.6.1 pyarrow==16.1.0 torch --extra-index-url https://download.pytorch.org/whl/cpu\n"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"id": "e0301175",
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"outputs": [
|
| 52 |
+
{
|
| 53 |
+
"name": "stdout",
|
| 54 |
+
"output_type": "stream",
|
| 55 |
+
"text": [
|
| 56 |
+
"Using device: cpu\n"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"data": {
|
| 61 |
+
"text/plain": [
|
| 62 |
+
"<torch._C.Generator at 0x7f36c08b7af0>"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
"execution_count": 1,
|
| 66 |
+
"metadata": {},
|
| 67 |
+
"output_type": "execute_result"
|
| 68 |
+
}
|
| 69 |
+
],
|
| 70 |
+
"source": [
|
| 71 |
+
"from typing import List, Dict, Any, Iterable, Optional, Tuple\n",
|
| 72 |
+
"import random\n",
|
| 73 |
+
"\n",
|
| 74 |
+
"import torch\n",
|
| 75 |
+
"from torch import nn\n",
|
| 76 |
+
"from torch.utils.data import DataLoader, IterableDataset as TorchIterable\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"import pyarrow as pa\n",
|
| 79 |
+
"import pyarrow.parquet as pq\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"from datasets import IterableDataset, interleave_datasets, Features, Sequence, Value, ClassLabel\n",
|
| 82 |
+
"from huggingface_hub import HfApi, HfFileSystem\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"# ====== USER CONFIG ======\n",
|
| 85 |
+
"HF_REPO = \"fastmachinelearning/collide-1m\" \n",
|
| 86 |
+
"\n",
|
| 87 |
+
"SELECTED_6 = {\n",
|
| 88 |
+
" \"DY\": \"DY to ll\",\n",
|
| 89 |
+
" \"QCD\": \"QCD inclusive\",\n",
|
| 90 |
+
" \"SingleHiggs\": \"VBFHtautau\",\n",
|
| 91 |
+
" \"top\": \"tt all-lept\",\n",
|
| 92 |
+
" \"diboson\": \"WZ (semi-leptonic)\",\n",
|
| 93 |
+
" \"diHiggs\": \"HH bbtautau\",\n",
|
| 94 |
+
"}\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"# Feature packing hyperparams\n",
|
| 97 |
+
"K_PART = 20 # top-K PUPPI particles by pT\n",
|
| 98 |
+
"K_JET = 4 # top-J AK4 jets by pT\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# Training config\n",
|
| 101 |
+
"TRAIN_PER_CLASS = 512\n",
|
| 102 |
+
"VAL_PER_CLASS = 100\n",
|
| 103 |
+
"BATCH_SIZE = 256\n",
|
| 104 |
+
"EPOCHS = 10\n",
|
| 105 |
+
"LR = 2e-3\n",
|
| 106 |
+
"SEED = 42\n",
|
| 107 |
+
"DEVICE = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
| 108 |
+
"print(f\"Using device: {DEVICE}\")\n",
|
| 109 |
+
"random.seed(SEED)\n",
|
| 110 |
+
"torch.manual_seed(SEED)\n"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": 2,
|
| 116 |
+
"id": "3292efac",
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [
|
| 119 |
+
{
|
| 120 |
+
"name": "stdout",
|
| 121 |
+
"output_type": "stream",
|
| 122 |
+
"text": [
|
| 123 |
+
"Classes: ['DY', 'QCD', 'SingleHiggs', 'top', 'diboson', 'diHiggs']\n",
|
| 124 |
+
"Pretty per class: {'DY': 'DY to ll', 'QCD': 'QCD inclusive', 'SingleHiggs': 'VBFHtautau', 'top': 'tt all-lept', 'diboson': 'WZ (semi-leptonic)', 'diHiggs': 'HH bbtautau'}\n",
|
| 125 |
+
"Folder per class: {'DY': 'DYJetsToLL_13TeV-madgraphMLM-pythia8', 'QCD': 'QCD_HT50toInf', 'SingleHiggs': 'VBFHtautau', 'top': 'tt0123j_5f_ckm_LO_MLM_leptonic', 'diboson': 'WZ_semileptonic', 'diHiggs': 'HH_bbtautau'}\n"
|
| 126 |
+
]
|
| 127 |
+
}
|
| 128 |
+
],
|
| 129 |
+
"source": [
|
| 130 |
+
"# Pretty name -> folder name (from your mapping)\n",
|
| 131 |
+
"PROCESS_TO_FOLDER = {\n",
|
| 132 |
+
" # DY / Z / W\n",
|
| 133 |
+
" \"DY to ll\": \"DYJetsToLL_13TeV-madgraphMLM-pythia8\",\n",
|
| 134 |
+
" \"Z -> vv + jet\": \"ZJetsTovv_13TeV-madgraphMLM-pythia8\",\n",
|
| 135 |
+
" \"Z -> qq (uds)\": \"ZJetsToQQ_13TeV-madgraphMLM-pythia8\",\n",
|
| 136 |
+
" \"Z -> bb\": \"ZJetsTobb_13TeV-madgraphMLM-pythia8\",\n",
|
| 137 |
+
" \"Z -> cc\": \"ZJetsTocc_13TeV-madgraphMLM-pythia8\",\n",
|
| 138 |
+
" \"W -> lv\": \"WJetsToLNu_13TeV-madgraphMLM-pythia8\",\n",
|
| 139 |
+
" \"W -> qq\": \"WJetsToQQ_13TeV-madgraphMLM-pythia8\",\n",
|
| 140 |
+
" \"gamma\": \"gamma\",\n",
|
| 141 |
+
" \"gamma + V\": \"gamma_V\",\n",
|
| 142 |
+
" \"tri-gamma\": \"tri_gamma\",\n",
|
| 143 |
+
"\n",
|
| 144 |
+
" # QCD\n",
|
| 145 |
+
" \"QCD inclusive\": \"QCD_HT50toInf\",\n",
|
| 146 |
+
" \"QCD bb\": \"QCD_HT50tobb\",\n",
|
| 147 |
+
" \"Minbias / Soft QCD\": \"minbias\",\n",
|
| 148 |
+
"\n",
|
| 149 |
+
" # top\n",
|
| 150 |
+
" \"tt all-hadr\": \"tt0123j_5f_ckm_LO_MLM_hadronic\",\n",
|
| 151 |
+
" \"tt semi-lept\": \"tt0123j_5f_ckm_LO_MLM_semiLeptonic\",\n",
|
| 152 |
+
" \"tt all-lept\": \"tt0123j_5f_ckm_LO_MLM_leptonic\",\n",
|
| 153 |
+
" \"ttH incl\": \"ttH_incl\",\n",
|
| 154 |
+
" \"tttt\": \"tttt_incl\",\n",
|
| 155 |
+
" \"ttW incl\": \"ttW_incl\",\n",
|
| 156 |
+
" \"ttZ incl\": \"ttZ_incl\",\n",
|
| 157 |
+
"\n",
|
| 158 |
+
" # dibosons\n",
|
| 159 |
+
" \"WW (all-leptonic)\": \"WW_leptonic\",\n",
|
| 160 |
+
" \"WW (all-hadronic)\": \"WW_hadronic\",\n",
|
| 161 |
+
" \"WW (semi-leptonic)\": \"WW_semileptonic\",\n",
|
| 162 |
+
" \"WZ (all-leptonic)\": \"WZ_leptonic\",\n",
|
| 163 |
+
" \"WZ (all-hadronic)\": \"WZ_hadronic\",\n",
|
| 164 |
+
" \"WZ (semi-leptonic)\": \"WZ_semileptonic\",\n",
|
| 165 |
+
" \"ZZ (all-leptonic)\": \"ZZ_leptonic\",\n",
|
| 166 |
+
" \"ZZ (all-hadronic)\": \"ZZ_hadronic\",\n",
|
| 167 |
+
" \"ZZ (semi-leptonic)\": \"ZZ_semileptonic\",\n",
|
| 168 |
+
" \"VVV\": \"VVV_incl\",\n",
|
| 169 |
+
" \"VH incl\": \"VH_incl\",\n",
|
| 170 |
+
"\n",
|
| 171 |
+
" # single-Higgs\n",
|
| 172 |
+
" \"ggHbb\": \"ggHbb\",\n",
|
| 173 |
+
" \"ggHcc\": \"ggHcc\",\n",
|
| 174 |
+
" \"ggHgammagamma\": \"ggHgammagamma\",\n",
|
| 175 |
+
" \"ggHgluglu\": \"ggHgluglu\",\n",
|
| 176 |
+
" \"ggHtautau\": \"ggHtautau\",\n",
|
| 177 |
+
" \"ggHWW\": \"ggHWW\",\n",
|
| 178 |
+
" \"ggHZZ\": \"ggHZZ\",\n",
|
| 179 |
+
" \"VBFHbb\": \"VBFHbb\",\n",
|
| 180 |
+
" \"VBFHcc\": \"VBFHcc\",\n",
|
| 181 |
+
" \"VBFHgammagamma\": \"VBFHgammagamma\",\n",
|
| 182 |
+
" \"VBFHgluglu\": \"VBFHgluglu\",\n",
|
| 183 |
+
" \"VBFHtautau\": \"VBFHtautau\",\n",
|
| 184 |
+
" \"VBFHWW\": \"VBFHWW\",\n",
|
| 185 |
+
" \"VBFHZZ\": \"VBFHZZ\",\n",
|
| 186 |
+
"\n",
|
| 187 |
+
" # di-Higgs\n",
|
| 188 |
+
" \"HH 4b\": \"HH_4b\",\n",
|
| 189 |
+
" \"HH bbtautau\": \"HH_bbtautau\",\n",
|
| 190 |
+
" \"HH bbWW\": \"HH_bbWW\",\n",
|
| 191 |
+
" \"HH bbZZ\": \"HH_bbZZ\",\n",
|
| 192 |
+
" \"HH bbgammagamma\": \"HH_bbgammagamma\",\n",
|
| 193 |
+
"}\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"CLASS_NAMES = list(SELECTED_6.keys())\n",
|
| 196 |
+
"PRETTY = {c: SELECTED_6[c] for c in CLASS_NAMES}\n",
|
| 197 |
+
"FOLDER = {c: PROCESS_TO_FOLDER[PRETTY[c]] for c in CLASS_NAMES}\n",
|
| 198 |
+
"LABELS = {c: i for i, c in enumerate(CLASS_NAMES)}\n",
|
| 199 |
+
"print(\"Classes:\", CLASS_NAMES)\n",
|
| 200 |
+
"print(\"Pretty per class:\", PRETTY)\n",
|
| 201 |
+
"print(\"Folder per class:\", FOLDER)\n"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"cell_type": "code",
|
| 206 |
+
"execution_count": 3,
|
| 207 |
+
"id": "2f3d1a00",
|
| 208 |
+
"metadata": {},
|
| 209 |
+
"outputs": [],
|
| 210 |
+
"source": [
|
| 211 |
+
"# Columns to read (FullReco only)\n",
|
| 212 |
+
"PUPPI_PART_COLS = [\n",
|
| 213 |
+
" 'FullReco_PUPPIPart_PT','FullReco_PUPPIPart_Eta','FullReco_PUPPIPart_Phi',\n",
|
| 214 |
+
" 'FullReco_PUPPIPart_Charge','FullReco_PUPPIPart_Mass','FullReco_PUPPIPart_PID',\n",
|
| 215 |
+
" 'FullReco_PUPPIPart_PuppiW'\n",
|
| 216 |
+
"]\n",
|
| 217 |
+
"\n",
|
| 218 |
+
"JET_AK4_COLS = [\n",
|
| 219 |
+
" 'FullReco_JetAK4_PT','FullReco_JetAK4_Eta','FullReco_JetAK4_Phi',\n",
|
| 220 |
+
" 'FullReco_JetAK4_Mass','FullReco_JetAK4_BTag','FullReco_JetAK4_Charge'\n",
|
| 221 |
+
"]\n",
|
| 222 |
+
"\n",
|
| 223 |
+
"ELEC_COLS = [\n",
|
| 224 |
+
" 'FullReco_Electron_PT','FullReco_Electron_Eta','FullReco_Electron_Phi',\n",
|
| 225 |
+
" 'FullReco_Electron_EhadOverEem','FullReco_Electron_IsolationVarRhoCorr'\n",
|
| 226 |
+
"]\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"MUON_COLS = [\n",
|
| 229 |
+
" 'FullReco_MuonTight_PT','FullReco_MuonTight_Eta','FullReco_MuonTight_Phi',\n",
|
| 230 |
+
" 'FullReco_MuonTight_IsolationVarRhoCorr'\n",
|
| 231 |
+
"]\n",
|
| 232 |
+
"\n",
|
| 233 |
+
"PHOT_COLS = [\n",
|
| 234 |
+
" 'FullReco_PhotonTight_PT','FullReco_PhotonTight_Eta','FullReco_PhotonTight_Phi'\n",
|
| 235 |
+
"]\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"MET_COLS = [\n",
|
| 238 |
+
" 'FullReco_PUPPIMET_MET','FullReco_PUPPIMET_Phi',\n",
|
| 239 |
+
" 'FullReco_MET_MET','FullReco_MET_Phi'\n",
|
| 240 |
+
"]\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"PV_COLS = [\n",
|
| 243 |
+
" 'FullReco_PrimaryVertex_Z','FullReco_PrimaryVertex_SumPT2'\n",
|
| 244 |
+
"]\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"ALL_COLS = PUPPI_PART_COLS + JET_AK4_COLS + ELEC_COLS + MUON_COLS + PHOT_COLS + MET_COLS + PV_COLS\n",
|
| 247 |
+
"\n",
|
| 248 |
+
"# Fixed vector length: 184\n",
|
| 249 |
+
"VLEN = 184\n"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "code",
|
| 254 |
+
"execution_count": 4,
|
| 255 |
+
"id": "7afc8005",
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"outputs": [],
|
| 258 |
+
"source": [
|
| 259 |
+
"api = HfApi()\n",
|
| 260 |
+
"fs = HfFileSystem()\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"def list_repo_parquet_files(repo_id: str, subfolder: str) -> List[str]:\n",
|
| 263 |
+
" files = api.list_repo_files(repo_id=repo_id, repo_type='dataset')\n",
|
| 264 |
+
" prefix = f\"{subfolder.strip('/')}/\"\n",
|
| 265 |
+
" return [f for f in files if f.startswith(prefix) and f.endswith('.parquet')]\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"def _safe_list(x):\n",
|
| 268 |
+
" if x is None:\n",
|
| 269 |
+
" return []\n",
|
| 270 |
+
" if isinstance(x, list):\n",
|
| 271 |
+
" return x\n",
|
| 272 |
+
" return [x]\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"def _pack_topk_by_pt(pt, *others, k: int, fill: List[float]):\n",
|
| 275 |
+
" idx = sorted(range(len(pt)), key=lambda i: pt[i] if pt[i] is not None else -1.0, reverse=True)\n",
|
| 276 |
+
" out = []\n",
|
| 277 |
+
" for j in range(k):\n",
|
| 278 |
+
" if j < len(idx):\n",
|
| 279 |
+
" i = idx[j]\n",
|
| 280 |
+
" vals = [pt[i]] + [arr[i] if i < len(arr) else 0.0 for arr in others]\n",
|
| 281 |
+
" else:\n",
|
| 282 |
+
" vals = fill\n",
|
| 283 |
+
" out.extend([float(v if v is not None else 0.0) for v in vals])\n",
|
| 284 |
+
" return out\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"def _pack_leading(vals: List[List[float]], fill: List[float]) -> List[float]:\n",
|
| 287 |
+
" if not vals or not vals[0]:\n",
|
| 288 |
+
" return fill\n",
|
| 289 |
+
" pt = vals[0]\n",
|
| 290 |
+
" if len(pt) == 0:\n",
|
| 291 |
+
" return fill\n",
|
| 292 |
+
" i = max(range(len(pt)), key=lambda j: pt[j] if pt[j] is not None else -1.0)\n",
|
| 293 |
+
" chosen = [arr[i] if i < len(arr) else 0.0 for arr in vals]\n",
|
| 294 |
+
" return [float(v if v is not None else 0.0) for v in chosen]\n",
|
| 295 |
+
"\n",
|
| 296 |
+
"def _best_pv(z_list, sumpt2_list) -> Tuple[float, float]:\n",
|
| 297 |
+
" if not sumpt2_list:\n",
|
| 298 |
+
" z = z_list[0] if z_list else 0.0\n",
|
| 299 |
+
" s = sumpt2_list[0] if sumpt2_list else 0.0\n",
|
| 300 |
+
" return float(z if z is not None else 0.0), float(s if s is not None else 0.0)\n",
|
| 301 |
+
" j = max(range(len(sumpt2_list)), key=lambda i: sumpt2_list[i] if sumpt2_list[i] is not None else -1.0)\n",
|
| 302 |
+
" z = z_list[j] if j < len(z_list) else 0.0\n",
|
| 303 |
+
" s = sumpt2_list[j]\n",
|
| 304 |
+
" return float(z if z is not None else 0.0), float(s if s is not None else 0.0)\n",
|
| 305 |
+
"\n",
|
| 306 |
+
"def build_vector(ev: Dict[str, Any]) -> List[float]:\n",
|
| 307 |
+
" # PUPPI particles\n",
|
| 308 |
+
" p_pt = _safe_list(ev.get('FullReco_PUPPIPart_PT'))\n",
|
| 309 |
+
" p_eta = _safe_list(ev.get('FullReco_PUPPIPart_Eta'))\n",
|
| 310 |
+
" p_phi = _safe_list(ev.get('FullReco_PUPPIPart_Phi'))\n",
|
| 311 |
+
" p_ch = _safe_list(ev.get('FullReco_PUPPIPart_Charge'))\n",
|
| 312 |
+
" p_m = _safe_list(ev.get('FullReco_PUPPIPart_Mass'))\n",
|
| 313 |
+
" p_pid = _safe_list(ev.get('FullReco_PUPPIPart_PID'))\n",
|
| 314 |
+
" p_w = _safe_list(ev.get('FullReco_PUPPIPart_PuppiW'))\n",
|
| 315 |
+
" part = _pack_topk_by_pt(p_pt, p_eta, p_phi, p_ch, p_m, p_pid, p_w, k=20, fill=[0.0]*7)\n",
|
| 316 |
+
"\n",
|
| 317 |
+
" # AK4 jets\n",
|
| 318 |
+
" j_pt = _safe_list(ev.get('FullReco_JetAK4_PT'))\n",
|
| 319 |
+
" j_eta = _safe_list(ev.get('FullReco_JetAK4_Eta'))\n",
|
| 320 |
+
" j_phi = _safe_list(ev.get('FullReco_JetAK4_Phi'))\n",
|
| 321 |
+
" j_m = _safe_list(ev.get('FullReco_JetAK4_Mass'))\n",
|
| 322 |
+
" j_bt = _safe_list(ev.get('FullReco_JetAK4_BTag'))\n",
|
| 323 |
+
" j_ch = _safe_list(ev.get('FullReco_JetAK4_Charge'))\n",
|
| 324 |
+
" jets = _pack_topk_by_pt(j_pt, j_eta, j_phi, j_m, j_bt, j_ch, k=4, fill=[0.0]*6)\n",
|
| 325 |
+
"\n",
|
| 326 |
+
" # Leading leptons/photons\n",
|
| 327 |
+
" e_pt = _safe_list(ev.get('FullReco_Electron_PT'))\n",
|
| 328 |
+
" e_eta = _safe_list(ev.get('FullReco_Electron_Eta'))\n",
|
| 329 |
+
" e_phi = _safe_list(ev.get('FullReco_Electron_Phi'))\n",
|
| 330 |
+
" e_hoe = _safe_list(ev.get('FullReco_Electron_EhadOverEem'))\n",
|
| 331 |
+
" e_iso = _safe_list(ev.get('FullReco_Electron_IsolationVarRhoCorr'))\n",
|
| 332 |
+
" elec = _pack_leading([e_pt, e_eta, e_phi, e_hoe, e_iso], fill=[0.0]*5)\n",
|
| 333 |
+
"\n",
|
| 334 |
+
" m_pt = _safe_list(ev.get('FullReco_MuonTight_PT'))\n",
|
| 335 |
+
" m_eta = _safe_list(ev.get('FullReco_MuonTight_Eta'))\n",
|
| 336 |
+
" m_phi = _safe_list(ev.get('FullReco_MuonTight_Phi'))\n",
|
| 337 |
+
" m_iso = _safe_list(ev.get('FullReco_MuonTight_IsolationVarRhoCorr'))\n",
|
| 338 |
+
" muon = _pack_leading([m_pt, m_eta, m_phi, m_iso], fill=[0.0]*4)\n",
|
| 339 |
+
"\n",
|
| 340 |
+
" g_pt = _safe_list(ev.get('FullReco_PhotonTight_PT'))\n",
|
| 341 |
+
" g_eta = _safe_list(ev.get('FullReco_PhotonTight_Eta'))\n",
|
| 342 |
+
" g_phi = _safe_list(ev.get('FullReco_PhotonTight_Phi'))\n",
|
| 343 |
+
" phot = _pack_leading([g_pt, g_eta, g_phi], fill=[0.0]*3)\n",
|
| 344 |
+
"\n",
|
| 345 |
+
" # MET\n",
|
| 346 |
+
" pmet = float(_safe_list(ev.get('FullReco_PUPPIMET_MET'))[0]) if _safe_list(ev.get('FullReco_PUPPIMET_MET')) else 0.0\n",
|
| 347 |
+
" pphi = float(_safe_list(ev.get('FullReco_PUPPIMET_Phi'))[0]) if _safe_list(ev.get('FullReco_PUPPIMET_Phi')) else 0.0\n",
|
| 348 |
+
" met = float(_safe_list(ev.get('FullReco_MET_MET'))[0]) if _safe_list(ev.get('FullReco_MET_MET')) else 0.0\n",
|
| 349 |
+
" mphi = float(_safe_list(ev.get('FullReco_MET_Phi'))[0]) if _safe_list(ev.get('FullReco_MET_Phi')) else 0.0\n",
|
| 350 |
+
"\n",
|
| 351 |
+
" # Primary vertex\n",
|
| 352 |
+
" pvz_list = _safe_list(ev.get('FullReco_PrimaryVertex_Z'))\n",
|
| 353 |
+
" pvsp2_list = _safe_list(ev.get('FullReco_PrimaryVertex_SumPT2'))\n",
|
| 354 |
+
" pvz, pvsp2 = _best_pv(pvz_list, pvsp2_list)\n",
|
| 355 |
+
"\n",
|
| 356 |
+
" # Counts\n",
|
| 357 |
+
" n_part = float(len(p_pt))\n",
|
| 358 |
+
" n_jet = float(len(j_pt))\n",
|
| 359 |
+
"\n",
|
| 360 |
+
" vec = part + jets + elec + muon + phot + [pmet, pphi, met, mphi] + [pvz, pvsp2] + [n_part, n_jet]\n",
|
| 361 |
+
" if len(vec) != 184:\n",
|
| 362 |
+
" if len(vec) < 184:\n",
|
| 363 |
+
" vec = vec + [0.0]*(184-len(vec))\n",
|
| 364 |
+
" else:\n",
|
| 365 |
+
" vec = vec[:184]\n",
|
| 366 |
+
" return vec\n",
|
| 367 |
+
"\n",
|
| 368 |
+
"def generate_examples(repo_id: str, process_folder: str, label_id: int,\n",
|
| 369 |
+
" per_class_limit: int, seed: int = 42):\n",
|
| 370 |
+
" files = list_repo_parquet_files(repo_id, process_folder)\n",
|
| 371 |
+
" if not files:\n",
|
| 372 |
+
" raise RuntimeError(f\"No parquet under '{process_folder}' in {repo_id}\")\n",
|
| 373 |
+
" rng = random.Random(seed)\n",
|
| 374 |
+
" rng.shuffle(files)\n",
|
| 375 |
+
" emitted = 0\n",
|
| 376 |
+
" for rel in files:\n",
|
| 377 |
+
" path = f\"hf://datasets/{repo_id}/{rel}\"\n",
|
| 378 |
+
" with fs.open(path, 'rb') as fh:\n",
|
| 379 |
+
" pqf = pq.ParquetFile(fh)\n",
|
| 380 |
+
" for batch in pqf.iter_batches(columns=ALL_COLS):\n",
|
| 381 |
+
" tbl = pa.Table.from_batches([batch])\n",
|
| 382 |
+
" pyd = tbl.to_pydict()\n",
|
| 383 |
+
" n = tbl.num_rows\n",
|
| 384 |
+
" cols = list(pyd.keys())\n",
|
| 385 |
+
" for i in range(n):\n",
|
| 386 |
+
" ev = {k: pyd[k][i] for k in cols}\n",
|
| 387 |
+
" x = build_vector(ev)\n",
|
| 388 |
+
" yield {\"x\": x, \"label\": label_id}\n",
|
| 389 |
+
" emitted += 1\n",
|
| 390 |
+
" if emitted >= per_class_limit:\n",
|
| 391 |
+
" return\n"
|
| 392 |
+
]
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"cell_type": "code",
|
| 396 |
+
"execution_count": 5,
|
| 397 |
+
"id": "8089bf8b",
|
| 398 |
+
"metadata": {},
|
| 399 |
+
"outputs": [
|
| 400 |
+
{
|
| 401 |
+
"name": "stdout",
|
| 402 |
+
"output_type": "stream",
|
| 403 |
+
"text": [
|
| 404 |
+
"IterableDataset({\n",
|
| 405 |
+
" features: ['x', 'label'],\n",
|
| 406 |
+
" n_shards: 1\n",
|
| 407 |
+
"})\n",
|
| 408 |
+
"IterableDataset({\n",
|
| 409 |
+
" features: ['x', 'label'],\n",
|
| 410 |
+
" n_shards: 1\n",
|
| 411 |
+
"})\n"
|
| 412 |
+
]
|
| 413 |
+
}
|
| 414 |
+
],
|
| 415 |
+
"source": [
|
| 416 |
+
"# Build datasets with a FIXED schema\n",
|
| 417 |
+
"features = Features({\n",
|
| 418 |
+
" 'x': Sequence(Value('float32'), length=184),\n",
|
| 419 |
+
" 'label': ClassLabel(names=CLASS_NAMES),\n",
|
| 420 |
+
"})\n",
|
| 421 |
+
"\n",
|
| 422 |
+
"def make_split(repo_id: str, per_class: int, seed: int) -> IterableDataset:\n",
|
| 423 |
+
" parts = []\n",
|
| 424 |
+
" for cname in CLASS_NAMES:\n",
|
| 425 |
+
" ds = IterableDataset.from_generator(\n",
|
| 426 |
+
" generate_examples,\n",
|
| 427 |
+
" gen_kwargs=dict(\n",
|
| 428 |
+
" repo_id=repo_id,\n",
|
| 429 |
+
" process_folder=FOLDER[cname],\n",
|
| 430 |
+
" label_id=LABELS[cname],\n",
|
| 431 |
+
" per_class_limit=per_class,\n",
|
| 432 |
+
" seed=seed + LABELS[cname],\n",
|
| 433 |
+
" ),\n",
|
| 434 |
+
" features=features,\n",
|
| 435 |
+
" )\n",
|
| 436 |
+
" parts.append(ds)\n",
|
| 437 |
+
" return interleave_datasets(parts, seed=seed)\n",
|
| 438 |
+
"\n",
|
| 439 |
+
"train_stream = make_split(HF_REPO, TRAIN_PER_CLASS, SEED)\n",
|
| 440 |
+
"val_stream = make_split(HF_REPO, VAL_PER_CLASS, SEED+1000)\n",
|
| 441 |
+
"print(train_stream)\n",
|
| 442 |
+
"print(val_stream)\n"
|
| 443 |
+
]
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"cell_type": "code",
|
| 447 |
+
"execution_count": 6,
|
| 448 |
+
"id": "e283afd8",
|
| 449 |
+
"metadata": {},
|
| 450 |
+
"outputs": [
|
| 451 |
+
{
|
| 452 |
+
"name": "stdout",
|
| 453 |
+
"output_type": "stream",
|
| 454 |
+
"text": [
|
| 455 |
+
"Estimated mean/std for 184 features.\n"
|
| 456 |
+
]
|
| 457 |
+
}
|
| 458 |
+
],
|
| 459 |
+
"source": [
|
| 460 |
+
"# Compute mean/std for scaling\n",
|
| 461 |
+
"def estimate_mean_std(hf_stream: IterableDataset, max_samples: int = 5000):\n",
|
| 462 |
+
" count = 0\n",
|
| 463 |
+
" mean = torch.zeros(184)\n",
|
| 464 |
+
" M2 = torch.zeros(184)\n",
|
| 465 |
+
" for ex in hf_stream.take(max_samples):\n",
|
| 466 |
+
" x = torch.tensor(ex['x'], dtype=torch.float32)\n",
|
| 467 |
+
" count += 1\n",
|
| 468 |
+
" delta = x - mean\n",
|
| 469 |
+
" mean += delta / max(count, 1)\n",
|
| 470 |
+
" delta2 = x - mean\n",
|
| 471 |
+
" M2 += delta * delta2\n",
|
| 472 |
+
" var = (M2 / max(count - 1, 1))\n",
|
| 473 |
+
" std = torch.sqrt(var + 1e-6)\n",
|
| 474 |
+
" return mean, std\n",
|
| 475 |
+
"\n",
|
| 476 |
+
"stats_stream = make_split(HF_REPO, per_class=min(256, TRAIN_PER_CLASS), seed=SEED+222)\n",
|
| 477 |
+
"MEAN, STD = estimate_mean_std(stats_stream, max_samples=512)\n",
|
| 478 |
+
"print(\"Estimated mean/std for\", len(MEAN), \"features.\")\n"
|
| 479 |
+
]
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"cell_type": "code",
|
| 483 |
+
"execution_count": 7,
|
| 484 |
+
"id": "f31332e0",
|
| 485 |
+
"metadata": {},
|
| 486 |
+
"outputs": [],
|
| 487 |
+
"source": [
|
| 488 |
+
"class HFToTorch(TorchIterable):\n",
|
| 489 |
+
" def __init__(self, hf_stream: IterableDataset):\n",
|
| 490 |
+
" self.hf_stream = hf_stream\n",
|
| 491 |
+
" def __iter__(self):\n",
|
| 492 |
+
" return iter(self.hf_stream)\n",
|
| 493 |
+
"\n",
|
| 494 |
+
"class CollateCLF:\n",
|
| 495 |
+
" def __init__(self, mean: torch.Tensor, std: torch.Tensor):\n",
|
| 496 |
+
" self.mean = mean\n",
|
| 497 |
+
" self.std = std\n",
|
| 498 |
+
" def __call__(self, batch: List[Dict[str, Any]]):\n",
|
| 499 |
+
" xs, ys = [], []\n",
|
| 500 |
+
" for ex in batch:\n",
|
| 501 |
+
" x = torch.tensor(ex['x'], dtype=torch.float32)\n",
|
| 502 |
+
" x = (x - self.mean) / self.std\n",
|
| 503 |
+
" y = int(ex['label'])\n",
|
| 504 |
+
" xs.append(x); ys.append(y)\n",
|
| 505 |
+
" return {\n",
|
| 506 |
+
" 'x': torch.stack(xs, dim=0),\n",
|
| 507 |
+
" 'y': torch.tensor(ys, dtype=torch.long),\n",
|
| 508 |
+
" }\n",
|
| 509 |
+
"\n",
|
| 510 |
+
"train_loader = DataLoader(HFToTorch(train_stream), batch_size=BATCH_SIZE, collate_fn=CollateCLF(MEAN, STD))\n"
|
| 511 |
+
]
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"cell_type": "code",
|
| 515 |
+
"execution_count": 8,
|
| 516 |
+
"id": "26cacf8b",
|
| 517 |
+
"metadata": {},
|
| 518 |
+
"outputs": [
|
| 519 |
+
{
|
| 520 |
+
"name": "stdout",
|
| 521 |
+
"output_type": "stream",
|
| 522 |
+
"text": [
|
| 523 |
+
"Val set: torch.Size([595, 184]) torch.Size([595])\n"
|
| 524 |
+
]
|
| 525 |
+
}
|
| 526 |
+
],
|
| 527 |
+
"source": [
|
| 528 |
+
"# Materialize validation once\n",
|
| 529 |
+
"Xv, Yv = [], []\n",
|
| 530 |
+
"for ex in val_stream:\n",
|
| 531 |
+
" Xv.append(((torch.tensor(ex['x']) - MEAN) / STD).unsqueeze(0))\n",
|
| 532 |
+
" Yv.append(int(ex['label']))\n",
|
| 533 |
+
"X_val = torch.cat(Xv, dim=0)\n",
|
| 534 |
+
"y_val = torch.tensor(Yv, dtype=torch.long)\n",
|
| 535 |
+
"print(\"Val set:\", X_val.shape, y_val.shape)\n"
|
| 536 |
+
]
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"cell_type": "code",
|
| 540 |
+
"execution_count": 9,
|
| 541 |
+
"id": "ea94521c",
|
| 542 |
+
"metadata": {},
|
| 543 |
+
"outputs": [],
|
| 544 |
+
"source": [
|
| 545 |
+
"class TinyMLP(nn.Module):\n",
|
| 546 |
+
" def __init__(self, d=184, h=256, num_classes=6):\n",
|
| 547 |
+
" super().__init__()\n",
|
| 548 |
+
" self.net = nn.Sequential(\n",
|
| 549 |
+
" nn.Linear(d, h), nn.ReLU(),\n",
|
| 550 |
+
" nn.Linear(h, h//2), nn.ReLU(),\n",
|
| 551 |
+
" nn.Linear(h//2, num_classes),\n",
|
| 552 |
+
" )\n",
|
| 553 |
+
" def forward(self, x):\n",
|
| 554 |
+
" return self.net(x)\n",
|
| 555 |
+
"\n",
|
| 556 |
+
"model = TinyMLP(d=184, h=256, num_classes=len(CLASS_NAMES)).to(DEVICE)\n",
|
| 557 |
+
"opt = torch.optim.AdamW(model.parameters(), lr=LR)\n",
|
| 558 |
+
"loss_fn = nn.CrossEntropyLoss()\n"
|
| 559 |
+
]
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"cell_type": "code",
|
| 563 |
+
"execution_count": null,
|
| 564 |
+
"id": "fec8c721",
|
| 565 |
+
"metadata": {},
|
| 566 |
+
"outputs": [
|
| 567 |
+
{
|
| 568 |
+
"name": "stdout",
|
| 569 |
+
"output_type": "stream",
|
| 570 |
+
"text": [
|
| 571 |
+
"[epoch 1] val acc: 49.24% | classes: ['DY', 'QCD', 'SingleHiggs', 'top', 'diboson', 'diHiggs']\n",
|
| 572 |
+
"epoch 2 step 20 | loss 0.4491\n",
|
| 573 |
+
"[epoch 2] val acc: 52.77% | classes: ['DY', 'QCD', 'SingleHiggs', 'top', 'diboson', 'diHiggs']\n",
|
| 574 |
+
"[epoch 3] val acc: 55.13% | classes: ['DY', 'QCD', 'SingleHiggs', 'top', 'diboson', 'diHiggs']\n"
|
| 575 |
+
]
|
| 576 |
+
}
|
| 577 |
+
],
|
| 578 |
+
"source": [
|
| 579 |
+
"def evaluate(model, X, y, batch=2048):\n",
|
| 580 |
+
" model.eval()\n",
|
| 581 |
+
" correct = 0\n",
|
| 582 |
+
" total = 0\n",
|
| 583 |
+
" with torch.no_grad():\n",
|
| 584 |
+
" for i in range(0, len(X), batch):\n",
|
| 585 |
+
" xb = X[i:i+batch].to(DEVICE)\n",
|
| 586 |
+
" yb = y[i:i+batch].to(DEVICE)\n",
|
| 587 |
+
" logits = model(xb)\n",
|
| 588 |
+
" pred = logits.argmax(dim=1)\n",
|
| 589 |
+
" correct += int((pred == yb).sum().item())\n",
|
| 590 |
+
" total += int(len(yb))\n",
|
| 591 |
+
" model.train()\n",
|
| 592 |
+
" return correct / max(total, 1)\n",
|
| 593 |
+
"\n",
|
| 594 |
+
"steps = 0\n",
|
| 595 |
+
"for epoch in range(1, EPOCHS+1):\n",
|
| 596 |
+
" running = 0.0\n",
|
| 597 |
+
" for batch in train_loader:\n",
|
| 598 |
+
" x = batch['x'].to(DEVICE, non_blocking=True)\n",
|
| 599 |
+
" y = batch['y'].to(DEVICE, non_blocking=True)\n",
|
| 600 |
+
"\n",
|
| 601 |
+
" logits = model(x)\n",
|
| 602 |
+
" loss = loss_fn(logits, y)\n",
|
| 603 |
+
" opt.zero_grad(set_to_none=True)\n",
|
| 604 |
+
" loss.backward()\n",
|
| 605 |
+
" opt.step()\n",
|
| 606 |
+
"\n",
|
| 607 |
+
" running += float(loss.item())\n",
|
| 608 |
+
" steps += 1\n",
|
| 609 |
+
" if steps % 20 == 0:\n",
|
| 610 |
+
" print(f\"epoch {epoch} step {steps} | loss {running/20:.4f}\")\n",
|
| 611 |
+
" running = 0.0\n",
|
| 612 |
+
"\n",
|
| 613 |
+
" acc = evaluate(model, X_val, y_val)\n",
|
| 614 |
+
" print(f\"[epoch {epoch}] val acc: {acc*100:.2f}% | classes: {CLASS_NAMES}\")\n",
|
| 615 |
+
"print(\"Training done.\")\n"
|
| 616 |
+
]
|
| 617 |
+
}
|
| 618 |
+
],
|
| 619 |
+
"metadata": {
|
| 620 |
+
"kernelspec": {
|
| 621 |
+
"display_name": "collide2v",
|
| 622 |
+
"language": "python",
|
| 623 |
+
"name": "python3"
|
| 624 |
+
},
|
| 625 |
+
"language_info": {
|
| 626 |
+
"codemirror_mode": {
|
| 627 |
+
"name": "ipython",
|
| 628 |
+
"version": 3
|
| 629 |
+
},
|
| 630 |
+
"file_extension": ".py",
|
| 631 |
+
"mimetype": "text/x-python",
|
| 632 |
+
"name": "python",
|
| 633 |
+
"nbconvert_exporter": "python",
|
| 634 |
+
"pygments_lexer": "ipython3",
|
| 635 |
+
"version": "3.10.18"
|
| 636 |
+
}
|
| 637 |
+
},
|
| 638 |
+
"nbformat": 4,
|
| 639 |
+
"nbformat_minor": 5
|
| 640 |
+
}
|