Datasets:
Upload COLLIDE2V_example_notebook.ipynb
Browse files- COLLIDE2V_example_notebook.ipynb +477 -0
COLLIDE2V_example_notebook.ipynb
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "432e48eb",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/afs/cern.ch/user/p/phploner/.local/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
15 |
+
]
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"source": [
|
19 |
+
"import awkward as ak\n",
|
20 |
+
"import pyarrow as pa\n",
|
21 |
+
"import pyarrow.parquet as pq\n",
|
22 |
+
"import os\n",
|
23 |
+
"# SPECIFY HERE A VALID CACHE DIRECTORY WITH ENOUGH STORAGE FOR THE DATASETS\n",
|
24 |
+
"os.environ[\"HF_HOME\"] = \"/eos/project/f/foundational-model-dataset/samples/philip_production/full_production_1percent/.cache/huggingface\"\n",
|
25 |
+
"from datasets import load_dataset\n"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"id": "2e31fb7f",
|
31 |
+
"metadata": {},
|
32 |
+
"source": [
|
33 |
+
"<small>One can download the whole dataset or parts of it using the `load_dataset` function. \n",
|
34 |
+
"Specify the process folder to be inspected using `data_dir` or specify single parquet files using the `data_files` argument.\n",
|
35 |
+
"Without these arguments the whole dataset will be accessible. \n",
|
36 |
+
"Since the dataset is huge, streaming will be necessary to access it.</small>"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 2,
|
42 |
+
"id": "a938312a",
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"# load dataset of one process folder\n",
|
47 |
+
"# if one wants to load the entire dataset, skip the data_dir or data_files argument\n",
|
48 |
+
"dataset = load_dataset(\"fastmachinelearning/collide-1m\", \n",
|
49 |
+
" data_dir=\"WJetsToLNu_13TeV-madgraphMLM-pythia8\",\n",
|
50 |
+
" streaming=True)\n",
|
51 |
+
"dataset = dataset[\"train\"]"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "markdown",
|
56 |
+
"id": "743e1cbb",
|
57 |
+
"metadata": {},
|
58 |
+
"source": [
|
59 |
+
"<small> Here are the different columns that are available in the dataset: </small>"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": 3,
|
65 |
+
"id": "14412cb7",
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [
|
68 |
+
{
|
69 |
+
"name": "stdout",
|
70 |
+
"output_type": "stream",
|
71 |
+
"text": [
|
72 |
+
"FullReco_PFCand_PT\n",
|
73 |
+
"FullReco_PFCand_Eta\n",
|
74 |
+
"FullReco_PFCand_Phi\n",
|
75 |
+
"FullReco_PFCand_PID\n",
|
76 |
+
"FullReco_PFCand_Charge\n",
|
77 |
+
"FullReco_PFCand_Mass\n",
|
78 |
+
"FullReco_PFCand_D0\n",
|
79 |
+
"FullReco_PFCand_DZ\n",
|
80 |
+
"FullReco_PFCand_ErrorD0\n",
|
81 |
+
"FullReco_PFCand_ErrorDZ\n",
|
82 |
+
"FullReco_PFCand_fUniqueID\n",
|
83 |
+
"FullReco_PFCand_PuppiW\n",
|
84 |
+
"FullReco_PUPPIPart_PT\n",
|
85 |
+
"FullReco_PUPPIPart_Eta\n",
|
86 |
+
"FullReco_PUPPIPart_Phi\n",
|
87 |
+
"FullReco_PUPPIPart_Charge\n",
|
88 |
+
"FullReco_PUPPIPart_Mass\n",
|
89 |
+
"FullReco_PUPPIPart_PID\n",
|
90 |
+
"FullReco_PUPPIPart_D0\n",
|
91 |
+
"FullReco_PUPPIPart_DZ\n",
|
92 |
+
"FullReco_PUPPIPart_ErrorD0\n",
|
93 |
+
"FullReco_PUPPIPart_ErrorDZ\n",
|
94 |
+
"FullReco_PUPPIPart_fUniqueID\n",
|
95 |
+
"FullReco_PUPPIPart_PuppiW\n",
|
96 |
+
"FullReco_Electron_PT\n",
|
97 |
+
"FullReco_Electron_Eta\n",
|
98 |
+
"FullReco_Electron_Phi\n",
|
99 |
+
"FullReco_Electron_EhadOverEem\n",
|
100 |
+
"FullReco_Electron_IsolationVarRhoCorr\n",
|
101 |
+
"FullReco_MuonTight_PT\n",
|
102 |
+
"FullReco_MuonTight_Eta\n",
|
103 |
+
"FullReco_MuonTight_Phi\n",
|
104 |
+
"FullReco_MuonTight_IsolationVarRhoCorr\n",
|
105 |
+
"FullReco_PhotonTight_PT\n",
|
106 |
+
"FullReco_PhotonTight_Eta\n",
|
107 |
+
"FullReco_PhotonTight_Phi\n",
|
108 |
+
"FullReco_JetAK4_PT\n",
|
109 |
+
"FullReco_JetAK4_Eta\n",
|
110 |
+
"FullReco_JetAK4_Phi\n",
|
111 |
+
"FullReco_JetAK4_Mass\n",
|
112 |
+
"FullReco_JetAK4_BTag\n",
|
113 |
+
"FullReco_JetAK4_BTagPhys\n",
|
114 |
+
"FullReco_JetAK4_Charge\n",
|
115 |
+
"FullReco_JetAK4_Constituents\n",
|
116 |
+
"FullReco_JetAK8_PT\n",
|
117 |
+
"FullReco_JetAK8_Eta\n",
|
118 |
+
"FullReco_JetAK8_Phi\n",
|
119 |
+
"FullReco_JetAK8_Mass\n",
|
120 |
+
"FullReco_JetAK8_BTag\n",
|
121 |
+
"FullReco_JetAK8_BTagPhys\n",
|
122 |
+
"FullReco_JetAK8_Charge\n",
|
123 |
+
"FullReco_JetPuppiAK4_PT\n",
|
124 |
+
"FullReco_JetPuppiAK4_Eta\n",
|
125 |
+
"FullReco_JetPuppiAK4_Phi\n",
|
126 |
+
"FullReco_JetPuppiAK4_Mass\n",
|
127 |
+
"FullReco_JetPuppiAK4_BTag\n",
|
128 |
+
"FullReco_JetPuppiAK4_BTagPhys\n",
|
129 |
+
"FullReco_JetPuppiAK4_Charge\n",
|
130 |
+
"FullReco_JetPuppiAK4_Constituents\n",
|
131 |
+
"FullReco_JetPuppiAK8_PT\n",
|
132 |
+
"FullReco_JetPuppiAK8_Eta\n",
|
133 |
+
"FullReco_JetPuppiAK8_Phi\n",
|
134 |
+
"FullReco_JetPuppiAK8_Mass\n",
|
135 |
+
"FullReco_JetPuppiAK8_BTag\n",
|
136 |
+
"FullReco_JetPuppiAK8_BTagPhys\n",
|
137 |
+
"FullReco_JetPuppiAK8_Charge\n",
|
138 |
+
"FullReco_MET_MET\n",
|
139 |
+
"FullReco_MET_Phi\n",
|
140 |
+
"FullReco_MET_Eta\n",
|
141 |
+
"FullReco_PUPPIMET_MET\n",
|
142 |
+
"FullReco_PUPPIMET_Phi\n",
|
143 |
+
"FullReco_PUPPIMET_Eta\n",
|
144 |
+
"FullReco_GenMissingET_MET\n",
|
145 |
+
"FullReco_GenMissingET_Eta\n",
|
146 |
+
"FullReco_GenMissingET_Phi\n",
|
147 |
+
"FullReco_GenPart_PT\n",
|
148 |
+
"FullReco_GenPart_Eta\n",
|
149 |
+
"FullReco_GenPart_Phi\n",
|
150 |
+
"FullReco_GenPart_PID\n",
|
151 |
+
"FullReco_GenPart_M1\n",
|
152 |
+
"FullReco_GenPart_M2\n",
|
153 |
+
"FullReco_GenPart_D1\n",
|
154 |
+
"FullReco_GenPart_D2\n",
|
155 |
+
"FullReco_GenPart_Status\n",
|
156 |
+
"FullReco_GenPart_IsPU\n",
|
157 |
+
"FullReco_GenJetAK4_PT\n",
|
158 |
+
"FullReco_GenJetAK4_Eta\n",
|
159 |
+
"FullReco_GenJetAK4_Phi\n",
|
160 |
+
"FullReco_GenJetAK4_Mass\n",
|
161 |
+
"FullReco_GenJetAK8_PT\n",
|
162 |
+
"FullReco_GenJetAK8_Eta\n",
|
163 |
+
"FullReco_GenJetAK8_Phi\n",
|
164 |
+
"FullReco_GenJetAK8_Mass\n",
|
165 |
+
"FullReco_PrimaryVertex_X\n",
|
166 |
+
"FullReco_PrimaryVertex_Y\n",
|
167 |
+
"FullReco_PrimaryVertex_Z\n",
|
168 |
+
"FullReco_PrimaryVertex_T\n",
|
169 |
+
"FullReco_PrimaryVertex_SumPT2\n",
|
170 |
+
"L1T_PFCand_PT\n",
|
171 |
+
"L1T_PFCand_Eta\n",
|
172 |
+
"L1T_PFCand_Phi\n",
|
173 |
+
"L1T_PFCand_PID\n",
|
174 |
+
"L1T_PFCand_Charge\n",
|
175 |
+
"L1T_PFCand_Mass\n",
|
176 |
+
"L1T_PFCand_D0\n",
|
177 |
+
"L1T_PFCand_DZ\n",
|
178 |
+
"L1T_PFCand_ErrorD0\n",
|
179 |
+
"L1T_PFCand_ErrorDZ\n",
|
180 |
+
"L1T_PFCand_fUniqueID\n",
|
181 |
+
"L1T_PFCand_PuppiW\n",
|
182 |
+
"L1T_PUPPIPart_PT\n",
|
183 |
+
"L1T_PUPPIPart_Eta\n",
|
184 |
+
"L1T_PUPPIPart_Phi\n",
|
185 |
+
"L1T_PUPPIPart_Charge\n",
|
186 |
+
"L1T_PUPPIPart_Mass\n",
|
187 |
+
"L1T_PUPPIPart_PID\n",
|
188 |
+
"L1T_PUPPIPart_D0\n",
|
189 |
+
"L1T_PUPPIPart_DZ\n",
|
190 |
+
"L1T_PUPPIPart_ErrorD0\n",
|
191 |
+
"L1T_PUPPIPart_ErrorDZ\n",
|
192 |
+
"L1T_PUPPIPart_fUniqueID\n",
|
193 |
+
"L1T_PUPPIPart_PuppiW\n",
|
194 |
+
"L1T_Electron_PT\n",
|
195 |
+
"L1T_Electron_Eta\n",
|
196 |
+
"L1T_Electron_Phi\n",
|
197 |
+
"L1T_Electron_EhadOverEem\n",
|
198 |
+
"L1T_Electron_IsolationVarRhoCorr\n",
|
199 |
+
"L1T_MuonTight_PT\n",
|
200 |
+
"L1T_MuonTight_Eta\n",
|
201 |
+
"L1T_MuonTight_Phi\n",
|
202 |
+
"L1T_MuonTight_IsolationVarRhoCorr\n",
|
203 |
+
"L1T_PhotonTight_PT\n",
|
204 |
+
"L1T_PhotonTight_Eta\n",
|
205 |
+
"L1T_PhotonTight_Phi\n",
|
206 |
+
"L1T_JetAK4_PT\n",
|
207 |
+
"L1T_JetAK4_Eta\n",
|
208 |
+
"L1T_JetAK4_Phi\n",
|
209 |
+
"L1T_JetAK4_Mass\n",
|
210 |
+
"L1T_JetAK4_BTag\n",
|
211 |
+
"L1T_JetAK4_BTagPhys\n",
|
212 |
+
"L1T_JetAK4_Charge\n",
|
213 |
+
"L1T_JetAK4_Constituents\n",
|
214 |
+
"L1T_JetAK8_PT\n",
|
215 |
+
"L1T_JetAK8_Eta\n",
|
216 |
+
"L1T_JetAK8_Phi\n",
|
217 |
+
"L1T_JetAK8_Mass\n",
|
218 |
+
"L1T_JetAK8_BTag\n",
|
219 |
+
"L1T_JetAK8_BTagPhys\n",
|
220 |
+
"L1T_JetAK8_Charge\n",
|
221 |
+
"L1T_JetPuppiAK4_PT\n",
|
222 |
+
"L1T_JetPuppiAK4_Eta\n",
|
223 |
+
"L1T_JetPuppiAK4_Phi\n",
|
224 |
+
"L1T_JetPuppiAK4_Mass\n",
|
225 |
+
"L1T_JetPuppiAK4_BTag\n",
|
226 |
+
"L1T_JetPuppiAK4_BTagPhys\n",
|
227 |
+
"L1T_JetPuppiAK4_Charge\n",
|
228 |
+
"L1T_JetPuppiAK4_Constituents\n",
|
229 |
+
"L1T_JetPuppiAK8_PT\n",
|
230 |
+
"L1T_JetPuppiAK8_Eta\n",
|
231 |
+
"L1T_JetPuppiAK8_Phi\n",
|
232 |
+
"L1T_JetPuppiAK8_Mass\n",
|
233 |
+
"L1T_JetPuppiAK8_BTag\n",
|
234 |
+
"L1T_JetPuppiAK8_BTagPhys\n",
|
235 |
+
"L1T_JetPuppiAK8_Charge\n",
|
236 |
+
"L1T_MET_MET\n",
|
237 |
+
"L1T_MET_Phi\n",
|
238 |
+
"L1T_MET_Eta\n",
|
239 |
+
"L1T_PUPPIMET_MET\n",
|
240 |
+
"L1T_PUPPIMET_Phi\n",
|
241 |
+
"L1T_PUPPIMET_Eta\n"
|
242 |
+
]
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"source": [
|
246 |
+
"cols = list(dataset.features.keys())\n",
|
247 |
+
"for c in cols:\n",
|
248 |
+
" print(c)"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"cell_type": "markdown",
|
253 |
+
"id": "3f48be1e",
|
254 |
+
"metadata": {},
|
255 |
+
"source": [
|
256 |
+
"<small> The dataset will have one row for each event, one can access the respective next row by calling `row=next(iter(dataset))`. Once a row is loaded, one can easily access the respective features using `row['feature']`, where 'feature' is any of the above listed columns. Loading multiple rows at once might lead to memory issues. </small>"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": 4,
|
262 |
+
"id": "adb5ae4d",
|
263 |
+
"metadata": {},
|
264 |
+
"outputs": [],
|
265 |
+
"source": [
|
266 |
+
"row1 = next(iter(dataset))"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": 16,
|
272 |
+
"id": "869dccac",
|
273 |
+
"metadata": {},
|
274 |
+
"outputs": [
|
275 |
+
{
|
276 |
+
"data": {
|
277 |
+
"text/html": [
|
278 |
+
"<pre>[0.291,\n",
|
279 |
+
" 0.226,\n",
|
280 |
+
" 0.454,\n",
|
281 |
+
" 0.468,\n",
|
282 |
+
" 0.412,\n",
|
283 |
+
" 0.22,\n",
|
284 |
+
" 0.755,\n",
|
285 |
+
" 0.963,\n",
|
286 |
+
" 0.484,\n",
|
287 |
+
" 0.814,\n",
|
288 |
+
" ...,\n",
|
289 |
+
" 5.42,\n",
|
290 |
+
" 0.735,\n",
|
291 |
+
" 2.6,\n",
|
292 |
+
" 1.99,\n",
|
293 |
+
" 2.98,\n",
|
294 |
+
" 2.21,\n",
|
295 |
+
" 3.04,\n",
|
296 |
+
" 1.14,\n",
|
297 |
+
" 3.48]\n",
|
298 |
+
"--------------------\n",
|
299 |
+
"backend: cpu\n",
|
300 |
+
"nbytes: 34.5 kB\n",
|
301 |
+
"type: 4318 * float64</pre>"
|
302 |
+
],
|
303 |
+
"text/plain": [
|
304 |
+
"<Array [0.291, 0.226, 0.454, ..., 3.04, 1.14, 3.48] type='4318 * float64'>"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
"execution_count": 16,
|
308 |
+
"metadata": {},
|
309 |
+
"output_type": "execute_result"
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"source": [
|
313 |
+
"example_arr = ak.Array(row1['FullReco_PFCand_PT'])\n",
|
314 |
+
"example_arr"
|
315 |
+
]
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"cell_type": "code",
|
319 |
+
"execution_count": 17,
|
320 |
+
"id": "9efa96de",
|
321 |
+
"metadata": {},
|
322 |
+
"outputs": [
|
323 |
+
{
|
324 |
+
"data": {
|
325 |
+
"text/plain": [
|
326 |
+
"ArrayType(NumpyType('float64'), 4318, None)"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
"execution_count": 17,
|
330 |
+
"metadata": {},
|
331 |
+
"output_type": "execute_result"
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"source": [
|
335 |
+
"example_arr.type"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "markdown",
|
340 |
+
"id": "7e6369c9",
|
341 |
+
"metadata": {},
|
342 |
+
"source": [
|
343 |
+
"<small> Once the data is saved in an array in this way, all the usual awkward array operations can be applied. </small>"
|
344 |
+
]
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"cell_type": "markdown",
|
348 |
+
"id": "29f6f3d6",
|
349 |
+
"metadata": {},
|
350 |
+
"source": [
|
351 |
+
"<small> To access a specific row, one can use the following `get_row_by_index` function. </small>"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": 18,
|
357 |
+
"id": "64a97872",
|
358 |
+
"metadata": {},
|
359 |
+
"outputs": [],
|
360 |
+
"source": [
|
361 |
+
"def get_row_by_index(dataset, target_index):\n",
|
362 |
+
" for i, row in enumerate(dataset):\n",
|
363 |
+
" if i == target_index:\n",
|
364 |
+
" return row\n",
|
365 |
+
" return None"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "code",
|
370 |
+
"execution_count": 19,
|
371 |
+
"id": "0b5da1cc",
|
372 |
+
"metadata": {},
|
373 |
+
"outputs": [],
|
374 |
+
"source": [
|
375 |
+
"row100 = get_row_by_index(dataset, 100)"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"cell_type": "code",
|
380 |
+
"execution_count": 22,
|
381 |
+
"id": "30afc6bc",
|
382 |
+
"metadata": {},
|
383 |
+
"outputs": [
|
384 |
+
{
|
385 |
+
"data": {
|
386 |
+
"text/html": [
|
387 |
+
"<pre>[1.47,\n",
|
388 |
+
" 1.01,\n",
|
389 |
+
" 1.14,\n",
|
390 |
+
" 0.894,\n",
|
391 |
+
" 0.905,\n",
|
392 |
+
" 0.647,\n",
|
393 |
+
" 1.15,\n",
|
394 |
+
" 0.616,\n",
|
395 |
+
" 0.736,\n",
|
396 |
+
" 0.521,\n",
|
397 |
+
" ...,\n",
|
398 |
+
" 1.26,\n",
|
399 |
+
" 2.95,\n",
|
400 |
+
" 6.43,\n",
|
401 |
+
" 1.82,\n",
|
402 |
+
" 1.76,\n",
|
403 |
+
" 2.72,\n",
|
404 |
+
" 2.86,\n",
|
405 |
+
" 1.29,\n",
|
406 |
+
" 0.773]\n",
|
407 |
+
"--------------------\n",
|
408 |
+
"backend: cpu\n",
|
409 |
+
"nbytes: 29.7 kB\n",
|
410 |
+
"type: 3709 * float64</pre>"
|
411 |
+
],
|
412 |
+
"text/plain": [
|
413 |
+
"<Array [1.47, 1.01, 1.14, 0.894, ..., 2.86, 1.29, 0.773] type='3709 * float64'>"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
"execution_count": 22,
|
417 |
+
"metadata": {},
|
418 |
+
"output_type": "execute_result"
|
419 |
+
}
|
420 |
+
],
|
421 |
+
"source": [
|
422 |
+
"example_arr100 = ak.Array(row100['FullReco_PFCand_PT'])\n",
|
423 |
+
"example_arr100"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": 23,
|
429 |
+
"id": "8ffdc8ed",
|
430 |
+
"metadata": {},
|
431 |
+
"outputs": [
|
432 |
+
{
|
433 |
+
"data": {
|
434 |
+
"text/plain": [
|
435 |
+
"ArrayType(NumpyType('float64'), 3709, None)"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
"execution_count": 23,
|
439 |
+
"metadata": {},
|
440 |
+
"output_type": "execute_result"
|
441 |
+
}
|
442 |
+
],
|
443 |
+
"source": [
|
444 |
+
"example_arr100.type"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "markdown",
|
449 |
+
"id": "b7002061",
|
450 |
+
"metadata": {},
|
451 |
+
"source": [
|
452 |
+
"<small> We hope you enjoy looking through this preliminary dataset and aim to have the full dataset uploaded soon. If you have any questions or suggestions please let us know at [email protected] or [email protected] .</small>"
|
453 |
+
]
|
454 |
+
}
|
455 |
+
],
|
456 |
+
"metadata": {
|
457 |
+
"kernelspec": {
|
458 |
+
"display_name": "Python 3",
|
459 |
+
"language": "python",
|
460 |
+
"name": "python3"
|
461 |
+
},
|
462 |
+
"language_info": {
|
463 |
+
"codemirror_mode": {
|
464 |
+
"name": "ipython",
|
465 |
+
"version": 3
|
466 |
+
},
|
467 |
+
"file_extension": ".py",
|
468 |
+
"mimetype": "text/x-python",
|
469 |
+
"name": "python",
|
470 |
+
"nbconvert_exporter": "python",
|
471 |
+
"pygments_lexer": "ipython3",
|
472 |
+
"version": "3.9.21"
|
473 |
+
}
|
474 |
+
},
|
475 |
+
"nbformat": 4,
|
476 |
+
"nbformat_minor": 5
|
477 |
+
}
|