Upload odinsynth_dataset.py
Browse files- odinsynth_dataset.py +153 -0
odinsynth_dataset.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from collections import defaultdict
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
_DESCRIPTION = """\
|
10 |
+
Supervised training data for odinsynth
|
11 |
+
"""
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
class OdinsynthDatasetBuilder(datasets.GeneratorBasedBuilder):
|
16 |
+
|
17 |
+
VERSION = datasets.Version("1.0.0")
|
18 |
+
|
19 |
+
# This is an example of a dataset with multiple configurations.
|
20 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
21 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
22 |
+
|
23 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
24 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
25 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
26 |
+
|
27 |
+
# You will be able to load one or the other configurations in the following list with
|
28 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
29 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
30 |
+
# BUILDER_CONFIGS = [
|
31 |
+
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
32 |
+
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
|
33 |
+
# ]
|
34 |
+
#
|
35 |
+
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def _info(self):
|
40 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
41 |
+
|
42 |
+
features = datasets.Features(
|
43 |
+
{
|
44 |
+
"rule_id": datasets.Value("int32"),
|
45 |
+
"source": datasets.Value("string"),
|
46 |
+
"destination": datasets.Value("string"),
|
47 |
+
"spec": datasets.Sequence(datasets.Value("string")),
|
48 |
+
"step": datasets.Value("int8"),
|
49 |
+
"length": datasets.Value("int8")
|
50 |
+
# These are the features of your dataset like images, labels ...
|
51 |
+
}
|
52 |
+
)
|
53 |
+
|
54 |
+
return datasets.DatasetInfo(
|
55 |
+
# This is the description that will appear on the datasets page.
|
56 |
+
description=_DESCRIPTION,
|
57 |
+
# This defines the different columns of the dataset and their types
|
58 |
+
features=features, # Here we define them above because they are different between the two configurations
|
59 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
60 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
61 |
+
# supervised_keys=("sentence", "label"),
|
62 |
+
# Homepage of the dataset for documentation
|
63 |
+
# homepage=_HOMEPAGE,
|
64 |
+
# # License for the dataset if available
|
65 |
+
# license=_LICENSE,
|
66 |
+
# # Citation for the dataset
|
67 |
+
# citation=_CITATION,
|
68 |
+
)
|
69 |
+
|
70 |
+
def _build_specs(self, path:str):
|
71 |
+
id_to_rule = {}
|
72 |
+
specs = defaultdict(set)
|
73 |
+
with open(path) as f:
|
74 |
+
for l in tqdm(f, desc="Pre-computing specs"):
|
75 |
+
try:
|
76 |
+
instance = json.loads(l)
|
77 |
+
rule_id = int(instance['id'])
|
78 |
+
rule = instance['question']
|
79 |
+
sent = instance['context']
|
80 |
+
specs[rule].add(sent)
|
81 |
+
id_to_rule[rule_id] = rule
|
82 |
+
except:
|
83 |
+
# TODO log
|
84 |
+
pass
|
85 |
+
|
86 |
+
return {rule_id:specs[rule] for rule_id, rule in id_to_rule.items()}
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def _split_generators(self, dl_manager):
|
91 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
92 |
+
|
93 |
+
JSON_PATH = os.path.join('merged_train_split_train.jsonl')
|
94 |
+
archive_iter = dl_manager.iter_archive('data.tar.bz2')
|
95 |
+
specs = self._build_specs(JSON_PATH)
|
96 |
+
return [
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.TRAIN,
|
99 |
+
# These kwargs will be passed to _generate_examples
|
100 |
+
gen_kwargs={
|
101 |
+
"archive_iter": dl_manager.iter_archive('data.tar.bz2'),
|
102 |
+
"specs": specs,
|
103 |
+
"split": "train",
|
104 |
+
},
|
105 |
+
),
|
106 |
+
datasets.SplitGenerator(
|
107 |
+
name=datasets.Split.TEST,
|
108 |
+
# These kwargs will be passed to _generate_examples
|
109 |
+
gen_kwargs={
|
110 |
+
"archive_iter": dl_manager.iter_archive('data.tar.bz2'),
|
111 |
+
"specs": specs,
|
112 |
+
"split": "test",
|
113 |
+
},
|
114 |
+
),
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.VALIDATION,
|
117 |
+
# These kwargs will be passed to _generate_examples
|
118 |
+
gen_kwargs={
|
119 |
+
"archive_iter": dl_manager.iter_archive('data.tar.bz2'),
|
120 |
+
"specs": specs,
|
121 |
+
"split": "val",
|
122 |
+
},
|
123 |
+
),
|
124 |
+
]
|
125 |
+
|
126 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
127 |
+
def _generate_examples(self, archive_iter, specs, split):
|
128 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
129 |
+
|
130 |
+
key = 0
|
131 |
+
for tsv_path, file in archive_iter:
|
132 |
+
if tsv_path.startswith(split) and tsv_path.endswith(".tsv"):
|
133 |
+
# Read the lines
|
134 |
+
reader = csv.reader((l.decode() for l in file), delimiter='\t')
|
135 |
+
for row in reader:
|
136 |
+
rule_id = int(row[0])
|
137 |
+
if rule_id in specs:
|
138 |
+
yield key, {
|
139 |
+
"rule_id": rule_id,
|
140 |
+
"source": row[1],
|
141 |
+
"destination": row[2],
|
142 |
+
"spec": specs[rule_id],
|
143 |
+
"step": int(row[3]),
|
144 |
+
"length": int(row[4]),
|
145 |
+
}
|
146 |
+
# Increase the key after yielding the instacne
|
147 |
+
key += 1
|
148 |
+
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
ds = OdinsynthDatasetBuilder()
|
152 |
+
ds.download_and_prepare()
|
153 |
+
print(ds.cache_dir)
|