|
import csv |
|
import json |
|
import os |
|
from collections import defaultdict |
|
|
|
import datasets |
|
from tqdm import tqdm |
|
|
|
_DESCRIPTION = """\ |
|
Supervised training data for odinsynth |
|
""" |
|
|
|
|
|
|
|
class OdinsynthDatasetBuilder(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"rule_id": datasets.Value("int32"), |
|
"parent": datasets.Value("string"), |
|
"child": datasets.Value("string"), |
|
"negative_child": datasets.Value("string"), |
|
"spec": datasets.Sequence(datasets.Value("string")), |
|
"matches": datasets.Sequence(datasets.Sequence(datasets.Value("int16"))), |
|
"step": datasets.Value("int8"), |
|
"length": datasets.Value("int8") |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
def _build_specs(self, path:str): |
|
id_to_rule = {} |
|
specs = defaultdict(list) |
|
matches = defaultdict(list) |
|
with open(path) as f: |
|
for l in tqdm(f, desc="Pre-computing specs"): |
|
try: |
|
instance = json.loads(l) |
|
if instance['match']: |
|
rule_id = int(instance['id']) |
|
rule = instance['question'] |
|
sent = instance['context'] |
|
if sent not in specs[rule]: |
|
specs[rule].append(sent) |
|
matches[rule].append([instance['match_start'], instance['match_end']]) |
|
id_to_rule[rule_id] = rule |
|
except: |
|
|
|
pass |
|
|
|
return {rule_id:(specs[rule], matches[rule]) for rule_id, rule in id_to_rule.items()} |
|
|
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
JSON_PATH = dl_manager.download_and_extract('merged_train_split_train.jsonl.gz') |
|
TRAIN_ARCHIVE_PATH = dl_manager.download('train.tar.bz2') |
|
VAL_ARCHIVE_PATH = dl_manager.download('val.tar.bz2') |
|
TEST_ARCHIVE_PATH = dl_manager.download('test.tar.bz2') |
|
|
|
specs = self._build_specs(JSON_PATH) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"archive_iter": dl_manager.iter_archive(TRAIN_ARCHIVE_PATH), |
|
"specs": specs, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"archive_iter": dl_manager.iter_archive(TEST_ARCHIVE_PATH), |
|
"specs": specs, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"archive_iter": dl_manager.iter_archive(VAL_ARCHIVE_PATH), |
|
"specs": specs, |
|
"split": "val", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, archive_iter, specs, split): |
|
|
|
|
|
key = 0 |
|
for tsv_path, file in archive_iter: |
|
if tsv_path.endswith(".tsv"): |
|
|
|
reader = csv.reader((l.decode() for l in file), delimiter='\t') |
|
for row in reader: |
|
rule_id = int(row[0]) |
|
if rule_id in specs: |
|
spec, matches = specs[rule_id] |
|
assert len(spec) == len(matches), f"Rule id {id} has different number of sentences and matches" |
|
|
|
yield key, { |
|
"rule_id": rule_id, |
|
"parent": row[1], |
|
"child": row[2], |
|
"negative_child": row[3], |
|
"spec": spec, |
|
"matches": matches, |
|
"step": int(row[4]), |
|
"length": int(row[5]), |
|
} |
|
|
|
key += 1 |
|
|
|
|
|
if __name__ == "__main__": |
|
ds = OdinsynthDatasetBuilder() |
|
ds.download_and_prepare() |
|
print(ds.cache_dir) |