--- dataset_info: features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': negative '1': positive - name: idx dtype: int32 - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels dtype: int64 - name: task dtype: string splits: - name: train num_bytes: 49401339 num_examples: 67349 - name: validation num_bytes: 685260 num_examples: 872 - name: test num_bytes: 1425784 num_examples: 1821 download_size: 6173225 dataset_size: 51512383 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # SST-2 (Modified for LLaMA 1B) This dataset is a modified version of the **Stanford Sentiment Treebank 2 (SST-2)**, a binary classification dataset for sentiment analysis. ## **Modifications:** - Labels were originally `"negative"` and `"positive"`, now converted to integers (`0` for negative, `1` for positive). - Each example includes a task prefix: `Task: SST2 | Sentence: ...` - The dataset has been **tokenized using the LLaMA-1B tokenizer**. - Maximum sequence length is **128 tokens**. ## **Dataset Usage:** ```python from datasets import load_dataset dataset = load_dataset("emirhanboge/sst2_llama1b_modified")