# Noisy-Labels-Instance-Segmentation ## This is the official repo for the paper A Benchmark for Learning with Noisy Labels in Instance Segmentation ![paper meme](https://github.com/eden500/Noisy-Labels-Instance-Segmentation/assets/66938362/e786140b-cd28-41d3-8193-2529f1ed37d5) ### ReadMe: Important! The original annotations should be in coco format. To run the benchmark, run the following: ``` python noise_annotations.py /path/to/annotations --benchmark {easy, medium, hard} (choose the benchmark level) --seed 1 ``` For example: ``` python noise_annotations.py /path/to/annotations --benchmark easy --seed 1 ``` To run a custom noise method, run the following: ``` python noise_annotations.py /path/to/annotations --method_name method_name --corruption_values [{'rand': [scale_proportion, kernel_size(should be odd number)],'localization': [scale_proportion, std_dev], 'approximation': [scale_proportion, tolerance], 'flip_class': percent_class_noise}]}] ``` For example: ``` python noise_annotations.py /path/to/annotations --method_name my_noise_method --corruption_values [{'rand': [0.2, 3], 'localization': [0.2, 2], 'approximation': [0.2, 5], 'flip_class': 0.2}] ``` ## Citation If you use this benchmark in your research, please cite this project. ``` Bibtex will be avalible shortly ``` ## License This project is released under the [Apache 2.0 license](https://github.com/eden500/Noisy-Labels-Instance-Segmentation/blob/main/LICENSE.txt). Please make sure you use it with proper licenced Datasets. We use [MS-COCO/LVIS](https://cocodataset.org/#termsofuse) and [Cityscapes](https://www.cityscapes-dataset.com/license/) ![image](https://github.com/eden500/Noisy-Labels-Instance-Segmentation/assets/66938362/3e22ad79-3f12-4767-b994-2df57dd265e7)