Datasets:

Languages:
English
ArXiv:
License:
COCO-N / noise_annotations.py
eden500's picture
Upload 3 files
3221cd8 verified
import json
import os
import numpy as np
import cv2
from pycocotools.coco import COCO
from pycocotools import mask as maskUtils
from shapely.geometry import Polygon
from tqdm import tqdm
import random
import argparse
def create_single_corruption_folder_copy_file(corruption_str, original_annotations_path, method_name):
"""
Creates new folders and copies the original annotation file to the new folder for later modification.
"""
base_path = f'noisy_data_{method_name}/coco_ann{corruption_str}'
os.makedirs(f'{base_path}/train', exist_ok=True)
os.makedirs(f'{base_path}/val', exist_ok=True)
for split in ['train', 'val']:
original_annotation_path = f'{original_annotations_path}/instances_{split}2017.json'
destination_path = f'{base_path}/{split}'
os.system(f'cp {original_annotation_path} {destination_path}')
print(f'Created folder and copied annotation file for {corruption_str}')
def create_new_folders_and_copy_files(original_annotations_path, method_name, corruption_distances):
"""
Creates new folders and copies files for the corrupted dataset.
"""
name_to_add = f'_{method_name}_'
for corruption_d in corruption_distances:
if isinstance(corruption_d, dict):
corruption_str = name_to_add + '_'.join(f'{k}_{str(v).replace(" ", "")}' for k, v in corruption_d.items()) + '_'
else:
corruption_str = name_to_add + str(corruption_d)
create_single_corruption_folder_copy_file(corruption_str, original_annotations_path, method_name)
def pick_noise(probabilities):
# Calculate the remaining probability for no noise.
remaining_probability = 1 - sum(p[0] for p in probabilities.values())
probabilities['none'] = [remaining_probability, None]
keys = list(probabilities.keys())
probs = [probabilities[key][0] for key in keys]
chosen_key = random.choices(keys, weights=probs, k=1)[0]
return chosen_key, probabilities[chosen_key][1]
def new_boundaries_with_prob(d, coco, ann_id, file, annotation):
"""
Modifies the boundaries of an annotation with a given probability.
"""
current_ann = coco.loadAnns(ann_id)[0]
mask = coco.annToMask(current_ann)
changed_class = False
if 'flip_class' in d:
boundary_ver = 'flip_class'
cat_to_index_dict, index_to_cat_dict = get_index_cat_dicts(file)
num_classes = get_num_classes(file)
percent_noise = d.pop('flip_class')
C = uniform_mix_C(percent_noise, num_classes) if boundary_ver == 'flip_class'\
else uniform_assymetric_mix_C(percent_noise, file, cat_to_index_dict, num_classes) # to support assym later
change_category_with_confusion_matrix_single(annotation, C, cat_to_index_dict, index_to_cat_dict)
changed_class = annotation['category_id'] != current_ann['category_id']
noise_type, k = pick_noise(d)
if noise_type == 'rand':
kernel = np.ones((k, k), np.uint8)
new_mask = cv2.dilate(mask, kernel, iterations=1) if np.random.rand() < 0.5 else cv2.erode(mask, kernel, iterations=1)
elif noise_type == 'localization':
new_mask = add_localization_noise(mask, k)
elif noise_type == 'approximation':
new_mask = add_approximation_noise(mask, k)
elif noise_type == 'none':
new_mask = mask
else:
raise ValueError(f'Unknown boundary version: {noise_type}')
# Convert modified mask back to RLE
rle_modified = maskUtils.encode(np.asfortranarray(new_mask))
rle_modified['counts'] = rle_modified['counts'].decode('utf-8') if isinstance(rle_modified['counts'], bytes) else rle_modified['counts']
return rle_modified, noise_type, changed_class
def change_boundaries_for_file(file, coco, d, seed=1):
"""
Changes the boundaries for all annotations in a given file.
"""
if seed is not None:
np.random.seed(seed)
for annotation in tqdm(file['annotations']):
new_mask, chosen_type, class_noise = new_boundaries_with_prob(d.copy(), coco, annotation['id'], file, annotation)
if chosen_type != 'none':
annotation['boundary_type'] = chosen_type
annotation['segmentation'] = new_mask
else:
annotation['boundary_type'] = 'none'
if class_noise:
annotation['class_noise'] = True
else:
annotation['class_noise'] = False
def noise_annotations(method_name, corruption_distances, seed=1):
"""
Adds noise to the annotations.
"""
first_dir = f'noisy_data_{method_name}'
name_to_add = f'_{method_name}_'
for corruption_d in corruption_distances:
corruption_str = name_to_add + ('_'.join(f'{k}_{str(v).replace(" ", "")}' for k, v in corruption_d.items()) + '_' if isinstance(corruption_d, dict) else str(corruption_d))
for split in ['train', 'val']:
with open(f'{first_dir}/coco_ann{corruption_str}/{split}/instances_{split}2017.json') as f:
ann = json.load(f)
coco = COCO(f'{first_dir}/coco_ann{corruption_str}/{split}/instances_{split}2017.json')
change_boundaries_for_file(ann, coco, corruption_d, seed)
with open(f'{first_dir}/coco_ann{corruption_str}/{split}/instances_{split}2017.json', 'w') as f:
json.dump(ann, f)
print(f'Finished {corruption_str}')
def mask_to_polygon(mask):
"""
Converts a mask to a polygon.
"""
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return [contour[:, 0, :] for contour in contours] if contours else []
def polygon_to_mask(polygon, h, w):
"""
Converts a polygon to a mask.
"""
mask = np.zeros((h, w), dtype=np.uint8)
cv2.fillPoly(mask, [polygon], 1)
return mask
def add_gaussian_noise(vertices, mean=0, std_dev=1):
"""
Adds Gaussian noise to each vertex in a polygon.
"""
noise = np.random.normal(mean, std_dev, vertices.shape)
return np.round(vertices + noise).astype(int)
def add_localization_noise(mask, std_dev=1):
"""
Adds Gaussian noise to the vertices of the polygon.
"""
if np.sum(mask) == 0:
return mask
final_mask_noisy = np.zeros(mask.shape, dtype=np.uint8)
for polygon in mask_to_polygon(mask):
vertices_noisy = add_gaussian_noise(polygon, std_dev=std_dev)
final_mask_noisy = np.maximum(final_mask_noisy, polygon_to_mask(vertices_noisy, mask.shape[0], mask.shape[1]))
return final_mask_noisy
def simplify_polygon(polygon, tolerance):
"""
Simplifies the polygon by removing vertices.
"""
if len(polygon) < 4:
return None
shapely_polygon = Polygon(polygon)
return shapely_polygon.simplify(tolerance, preserve_topology=True)
def simplified_polygon_to_mask(simplified_polygon, h, w):
"""
Converts a simplified polygon back to a mask.
"""
new_mask = np.zeros((h, w), dtype=np.uint8)
simplified_coords = np.array(simplified_polygon.exterior.coords).reshape((-1, 1, 2))
cv2.fillPoly(new_mask, [simplified_coords.astype(np.int32)], color=(1))
return new_mask
def add_approximation_noise(mask, tolerance):
"""
Adds noise to the vertices of the polygon by simplifying it.
"""
if np.sum(mask) == 0:
return mask
final_mask_noisy = np.zeros(mask.shape, dtype=np.uint8)
for polygon in mask_to_polygon(mask):
simplified_polygon = simplify_polygon(polygon, tolerance)
if simplified_polygon is None:
continue
mask_noisy = simplified_polygon_to_mask(simplified_polygon, mask.shape[0], mask.shape[1])
final_mask_noisy = np.maximum(final_mask_noisy, mask_noisy)
return final_mask_noisy
def change_category_with_confusion_matrix_single(annotation, C, cat_to_index_dict, index_to_cat_dict):
"""
Changes the category_id of an annotation based on a confusion matrix.
"""
chosen_index = np.random.choice(np.arange(C.shape[1]), p=C[cat_to_index_dict[annotation['category_id']]])
annotation['category_id'] = index_to_cat_dict[chosen_index]
def get_index_cat_dicts(ann):
"""
Returns dictionaries mapping category_id to index and vice versa.
"""
cat_to_index_dict = {cat_info['id']: i for i, cat_info in enumerate(ann['categories'])}
index_to_cat_dict = {i: cat_info['id'] for i, cat_info in enumerate(ann['categories'])}
return cat_to_index_dict, index_to_cat_dict
def get_num_classes(ann):
"""
Returns the number of classes in the dataset.
"""
return len(ann['categories'])
def uniform_mix_C(mixing_ratio, num_classes):
"""
Returns a linear interpolation of a uniform matrix and an identity matrix.
"""
return mixing_ratio * np.full((num_classes, num_classes), 1 / num_classes) + (1 - mixing_ratio) * np.eye(num_classes)
def uniform_assymetric_mix_C(mixing_ratio, ann, cat_to_index_dict, num_classes):
"""
Returns a matrix with (1 - corruption_prob) on the diagonals, and corruption_prob
concentrated in only one other entry for each row.
"""
subcat_dict = {cat_info['supercategory']: [] for cat_info in ann['categories']}
for cat_info in ann['categories']:
subcat_dict[cat_info['supercategory']].append(cat_to_index_dict[cat_info['id']])
C = np.zeros((num_classes, num_classes))
for i in range(num_classes):
C[i][subcat_dict[ann['categories'][i]['supercategory']]] = mixing_ratio * 1 / len(subcat_dict[ann['categories'][i]['supercategory']])
C[i][i] += 1 - mixing_ratio
return C
def argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument('annotations_path', type=str, help='The path to the original annotations')
parser.add_argument('--method_name', type=str, default='custom_method', help='The name of the method to be used for the corruption')
parser.add_argument('--benchmark', type=str, default='', help='The benchmark to be used for the corruption')
parser.add_argument('--corruption_values', type=list, default=[{'rand': [1, 3]}], help='The values to be used for the corruption')
parser.add_argument('--seed', type=int, default=1, help='The seed to be used for the random noise')
return parser.parse_args()
if __name__ == '__main__':
args = argument_parser()
Benchmarks = {
'easy':
{'approximation': [0.2, 5], 'localization': [0.2, 2], 'rand': [0.2, 3], 'flip_class': 0.2},
'medium':
{'approximation': [0.25, 10], 'localization': [0.25, 3], 'rand': [0.25, 5], 'flip_class': 0.3},
'hard':
{'approximation': [0.3, 15], 'localization': [0.3, 4], 'rand': [0.3, 7], 'flip_class': 0.4}
}
original_annotations_path = args.annotations_path
corruption_values = args.corruption_values
if args.benchmark:
corruption_values = Benchmarks[args.benchmark]
method_name = args.method_name
if args.benchmark:
method_name = args.benchmark
create_new_folders_and_copy_files(original_annotations_path, method_name, corruption_values)
noise_annotations(method_name, corruption_values, seed=args.seed)
# read me:
# To run the benchmark, run the following:
# python noise_annotations.py /path/to/annotations --benchmark {easy, medium, hard} (choose one of the three) --seed 1
# To run a custom noise method, run the following:
# python noise_annotations.py /path/to/annotations --method_name method_name
# --corruption_values [{'rand': [scale_proportion, kernel_size(should be odd number)],
# 'localization': [scale_proportion, std_dev],
# 'approximation': [scale_proportion, tolerance], 'flip_class': percent_class_noise}]}]
#
# for example:
# python noise_annotations.py /path/to/annotations --method_name my_noise_method
# --corruption_values [{'rand': [0.2, 3], 'localization': [0.2, 2], 'approximation': [0.2, 5], 'flip_class': 0.2}]
#
# The script will create new folders and copy the original annotation files to the new folders. (the original annotations should be in coco format)
# It will then add noise to the annotations in the new folders based on the specified corruption values.
# The seed can be specified to ensure reproducibility.