Datasets:

Modalities:
Text
Formats:
text
ArXiv:
Libraries:
Datasets
License:
File size: 7,442 Bytes
2c4f474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from pathlib import Path
from tqdm import tqdm
from rich import print
from ember import PEFeatureExtractor
import numpy as np
import typing as t

EMBER_DIM = 2381

def find_filename(hash: str, folder: Path) -> str:
    """Looks for filename equal to hash in subfolders of folder.
    Filename can be suffixed with .dat, or be not suffixed at all.
    Returns relative path to the file"""
    for file in folder.rglob(f"{hash}*.dat"):
        return str(file)
    for file in folder.rglob(f"{hash}*"):
        return str(file)
    return None


def read_quovadis_hashes(
    quovadis_path: Path,
) -> t.Tuple[t.Dict[str, t.List[str]], t.Dict[str, t.List[str]]]:
    
    def _read_files(folder: Path) -> list[str]:
        files = []
        for file in tqdm(folder.glob("*"), desc=f"[*] Reading files in {folder.name:<25}"):
            if file.is_file():
                files.append(file.name.replace(".dat", "").replace(".json", ""))
        return files

    def _read_dataset(folder: Path) -> t.Dict[str, t.List[str]]:
        hashes = {}
        for subfolder in folder.glob("*"):
            if subfolder.is_dir():
                if "clean" in subfolder.name or "syswow64" in subfolder.name:
                    files = _read_files(subfolder)
                    hashes["benign"] = files
                else:
                    malware_type = subfolder.name.replace("report_", "")
                    files = _read_files(subfolder)
                    hashes[malware_type] = files
        return hashes
    

    train_quo_vadis_path = quovadis_path / "windows_emulation_trainset"
    train_hashes = _read_dataset(train_quo_vadis_path)

    test_quo_vadis_path = quovadis_path / "windows_emulation_testset"
    test_hashes = _read_dataset(test_quo_vadis_path)

    return train_hashes, test_hashes

def get_ember_features(hash: str, pe_path: Path, extractor: PEFeatureExtractor) -> np.ndarray:
    pe_path = find_filename(hash, pe_path)
    with open(pe_path, "rb") as f:
        pe_bytes = f.read()

    features = np.array(extractor.feature_vector(pe_bytes), dtype=np.float32)
    return features


def extract_and_write_features(
    hashes: t.Dict[str, t.List[str]],
    raw_pe_root_path: Path,
    output_dir: Path,
    write_every: int = 10,
    limit: int = None,
) -> None:
    print(f"[*] Starting work on {output_dir.name}")
    output_dir.mkdir(parents=True, exist_ok=True)    
    
    def _save_intermediate_state(
        features_file: Path,
        features_numpy_arr: np.ndarray,
        completed_hashes_file: Path,
        completed_log: t.List[str],
        errors_log_file: Path,
        errors_log: t.List[str],
    ) -> None:
        np.save(features_file, features_numpy_arr)
        with open(completed_hashes_file, 'w') as f:
            for h in completed_log:
                f.write(f"{h}\n")
        with open(errors_log_file, "w") as f:
            for h in errors_log:
                f.write(f"{h}\n")

    def _parse_binary_type(hashes: t.List[str], binary_type: str):
        print(f"\n[*] Parsing '{binary_type}' hashes!\n")
        output_dir_subtype = output_dir / binary_type
        output_dir_subtype.mkdir(parents=True, exist_ok=True)

        features_file = output_dir_subtype / "features.npy"
        completed_hashes_file = output_dir_subtype / "hashes.txt"
        errors_log_file = output_dir_subtype / "errors.log"
    
        files_exist = all(f.exists() for f in [features_file, completed_hashes_file, errors_log_file])
        if files_exist:
            # read features
            features_numpy_arr = np.load(features_file)

            # read completed hashes
            with open(completed_hashes_file, 'r') as f:
                completed_log = [line.strip() for line in f]
                completed_hashes = [line.split(",")[1].strip() for line in completed_log]
            
            # read errors
            with open(errors_log_file, 'r') as f:
                errors_log = [line.strip() for line in f]
                errored_hashes = [e.split(",")[1].strip() for e in errors_log]
            
            remaining_hashes = [h for h in hashes if h not in completed_hashes]
            remaining_hashes = [h for h in remaining_hashes if h not in errored_hashes]
            assert len(remaining_hashes) == len(hashes) - len(completed_hashes) - len(errors_log),\
                f"Remaining hashes do not match: {len(remaining_hashes)} != {len(hashes)} - {len(completed_hashes)} - {len(errors_log)}"

            print(f"[!] Found: {len(completed_hashes)} completed | {len(errors_log)} errored | {len(remaining_hashes)} remaining!")
            hashes = remaining_hashes

        else:
            features_numpy_arr = np.zeros((len(hashes), EMBER_DIM), dtype=np.float32)
            completed_log = []
            errors_log = []
        

        extractor = PEFeatureExtractor(print_feature_warning=False)        
        start_idx = len(completed_log) + len(errors_log)
        print(f"[*] Starting from index {start_idx}")
        pbar = tqdm(hashes, desc=f"[*] Extracting features...")
        for i, h in enumerate(pbar):
            i += start_idx
            try:
                features = get_ember_features(h, raw_pe_root_path, extractor)
                features_numpy_arr[i] = features
                completed_log.append(f"{i},{h}")
            except KeyboardInterrupt:
                raise KeyboardInterrupt
            except Exception as e:
                err_msg = f"{i},{h},{e}"
                print(f"[-] {err_msg}") 
                errors_log.append(err_msg)
                pbar.set_description(f"[*] Extracting features... | Errors: {len(errors_log)}")
            if i > 0 and i % write_every == 0:
                _save_intermediate_state(
                    features_file, features_numpy_arr, completed_hashes_file, completed_log, errors_log_file, errors_log
                )
                # print(f"[!] Dumped intermediate state to {output_dir_subtype.name}")

        # final save
        _save_intermediate_state(
            features_file, features_numpy_arr, completed_hashes_file, completed_log, errors_log_file, errors_log
        )

        # clean errored indices if any
        if features_numpy_arr.shape[0] != len(hashes):
            errored_indices = [int(e.split(",")[0]) for e in errors_log]
            assert np.all(features_numpy_arr[errored_indices] == 0), "Some errored indices are not 0"
            features_numpy_arr = np.delete(features_numpy_arr, errored_indices, axis=0)
            np.save(features_file, features_numpy_arr)

        print(f"[*] Finished work on {output_dir.name}")
        print(f"[INFO] {len(completed_log)} hashes completed | {len(errors_log)} errored | {len(features_numpy_arr)} features")

    for binary_type in hashes.keys():
        _parse_binary_type(hashes[binary_type][:limit], binary_type)


if __name__ == "__main__":
    quovadis_path = Path("quovadis")
    quovadis_ember_path = Path("quovadis_ember")
    quovadis_ember_path.mkdir(parents=True, exist_ok=True)

    train_hashes, test_hashes = read_quovadis_hashes(quovadis_path)
    
    raw_pe_root_path_train = Path("/data/datasets/pe/pe_trainset")
    raw_pe_root_path_test = Path("/data/datasets/pe/pe_testset")

    extract_and_write_features(train_hashes, raw_pe_root_path_train, quovadis_ember_path / "train")
    extract_and_write_features(test_hashes, raw_pe_root_path_test, quovadis_ember_path / "test")