Datasets:

Modalities:
Text
Formats:
text
ArXiv:
Libraries:
Datasets
License:
File size: 3,791 Bytes
6269d43
 
 
e0d5605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e41df
e0d5605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---

license: apache-2.0
---


# About Dataset

## Citation

This dataset was created and further refined as part of the following two publications:

- "Quo Vadis: Hybrid Machine Learning Meta-Model Based on Contextual and Behavioral Malware Representations", Trizna et al., 2022, https://dl.acm.org/doi/10.1145/3560830.3563726

- "Nebula: Self-Attention for Dynamic Malware Analysis", Trizna et al., 2024, https://ieeexplore.ieee.org/document/10551436

If you used it in your research, please cite us:

```bibtex

@inproceedings{quovadis,

author = {Trizna, Dmitrijs},

title = {Quo Vadis: Hybrid Machine Learning Meta-Model Based on Contextual and Behavioral Malware Representations},

year = {2022},

isbn = {9781450398800},

publisher = {Association for Computing Machinery},

address = {New York, NY, USA},

url = {https://doi.org/10.1145/3560830.3563726},

doi = {10.1145/3560830.3563726},

booktitle = {Proceedings of the 15th ACM Workshop on Artificial Intelligence and Security},

pages = {127–136},

numpages = {10},

keywords = {reverse engineering, neural networks, malware, emulation, convolutions},

location = {Los Angeles, CA, USA},

series = {AISec'22}

}

@ARTICLE{nebula,

  author={Trizna, Dmitrijs and Demetrio, Luca and Biggio, Battista and Roli, Fabio},

  journal={IEEE Transactions on Information Forensics and Security}, 

  title={Nebula: Self-Attention for Dynamic Malware Analysis}, 

  year={2024},

  volume={19},

  number={},

  pages={6155-6167},

  keywords={Malware;Feature extraction;Data models;Analytical models;Long short term memory;Task analysis;Encoding;Malware;transformers;dynamic analysis;convolutional neural networks},

  doi={10.1109/TIFS.2024.3409083}}

```

Arxiv references of both papers: arxiv.org/abs/2310.10664 and arxiv.org/abs/2208.12248.

## Description

This dataset contains EMBER features obtained from **93533** 32-bit portable executables (PE), used in *Quo Vadis* and *Nebula* papers. Features extraction scheme described in the original paper EMBER paper by Anderson and Roth: https://arxiv.org/abs/1804.04637.

Complementary dataset with of emulated behavioral reports by Speakeasy is available at https://huggingface.co/datasets/dtrizna/quovadis-speakeasy.

To reflect concept drift in malware:

- 76126 files that form a training set were collected in Jan 2022.
- 17407 files that form a test set were collected in Apr 2022.

## Labels
Files noted as `benign` are clean. All others represent malware distributed over 7 families. A specific number of files in each category is below. Notably, 

Successfully processed files:
```

$ for file in $(find . | grep hashes); do wc -l $file; done

24416 ./train/benign/hashes.txt

4378 ./train/keylogger/hashes.txt

8243 ./train/dropper/hashes.txt

6548 ./train/coinminer/hashes.txt

1697 ./train/rat/hashes.txt

8733 ./train/trojan/hashes.txt

9627 ./train/ransomware/hashes.txt

11061 ./train/backdoor/hashes.txt



7940 ./test/benign/hashes.txt

1041 ./test/keylogger/hashes.txt

252 ./test/dropper/hashes.txt

1684 ./test/coinminer/hashes.txt

1258 ./test/rat/hashes.txt

1085 ./test/trojan/hashes.txt

2139 ./test/ransomware/hashes.txt

1940 ./test/backdoor/hashes.txt



```

Errors:
```

$ for file in $(find . | grep errors); do wc -l $file; done

18 ./train/benign/errors.log

0 ./train/keylogger/errors.log

0 ./train/dropper/errors.log

343 ./train/coinminer/errors.log

0 ./train/rat/errors.log

0 ./train/trojan/errors.log

0 ./train/ransomware/errors.log

1 ./train/backdoor/errors.log



4 ./test/benign/errors.log

0 ./test/keylogger/errors.log

0 ./test/dropper/errors.log

0 ./test/coinminer/errors.log

0 ./test/rat/errors.log

0 ./test/trojan/errors.log

0 ./test/ransomware/errors.log

0 ./test/backdoor/errors.log

```