Diffusers Bot
commited on
Upload folder using huggingface_hub
Browse files- main/README.md +48 -3
- main/pipeline_hunyuandit_differential_img2img.py +1144 -0
main/README.md
CHANGED
|
@@ -71,6 +71,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
|
|
| 71 |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
|
| 72 |
| FRESCO V2V Pipeline | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962) | [FRESCO V2V Pipeline](#fresco) | - | [Yifan Zhou](https://github.com/SingleZombie) |
|
| 73 |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
|
|
|
| 74 |
|
| 75 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
| 76 |
|
|
@@ -1646,7 +1647,6 @@ from diffusers import DiffusionPipeline
|
|
| 1646 |
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
|
| 1647 |
subfolder="scheduler")
|
| 1648 |
|
| 1649 |
-
|
| 1650 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
|
| 1651 |
custom_pipeline="stable_diffusion_tensorrt_img2img",
|
| 1652 |
variant='fp16',
|
|
@@ -1661,7 +1661,6 @@ pipe = pipe.to("cuda")
|
|
| 1661 |
url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
|
| 1662 |
response = requests.get(url)
|
| 1663 |
input_image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 1664 |
-
|
| 1665 |
prompt = "photorealistic new zealand hills"
|
| 1666 |
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
|
| 1667 |
image.save('tensorrt_img2img_new_zealand_hills.png')
|
|
@@ -4209,6 +4208,52 @@ print("Latency of AnimateDiffPipelineIpex--fp32", latency, "s for total", step,
|
|
| 4209 |
latency = elapsed_time(pipe4, num_inference_steps=step)
|
| 4210 |
print("Latency of AnimateDiffPipeline--fp32",latency, "s for total", step, "steps")
|
| 4211 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4212 |
|
| 4213 |
# Perturbed-Attention Guidance
|
| 4214 |
|
|
@@ -4285,4 +4330,4 @@ grid_image.save(grid_dir + "sample.png")
|
|
| 4285 |
|
| 4286 |
`pag_scale` : guidance scale of PAG (ex: 5.0)
|
| 4287 |
|
| 4288 |
-
`pag_applied_layers_index` : index of the layer to apply perturbation (ex: ['m0'])
|
|
|
|
| 71 |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
|
| 72 |
| FRESCO V2V Pipeline | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962) | [FRESCO V2V Pipeline](#fresco) | - | [Yifan Zhou](https://github.com/SingleZombie) |
|
| 73 |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
| 74 |
+
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffsuion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
|
| 75 |
|
| 76 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
| 77 |
|
|
|
|
| 1647 |
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
|
| 1648 |
subfolder="scheduler")
|
| 1649 |
|
|
|
|
| 1650 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
|
| 1651 |
custom_pipeline="stable_diffusion_tensorrt_img2img",
|
| 1652 |
variant='fp16',
|
|
|
|
| 1661 |
url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
|
| 1662 |
response = requests.get(url)
|
| 1663 |
input_image = Image.open(BytesIO(response.content)).convert("RGB")
|
|
|
|
| 1664 |
prompt = "photorealistic new zealand hills"
|
| 1665 |
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
|
| 1666 |
image.save('tensorrt_img2img_new_zealand_hills.png')
|
|
|
|
| 4208 |
latency = elapsed_time(pipe4, num_inference_steps=step)
|
| 4209 |
print("Latency of AnimateDiffPipeline--fp32",latency, "s for total", step, "steps")
|
| 4210 |
```
|
| 4211 |
+
### HunyuanDiT with Differential Diffusion
|
| 4212 |
+
|
| 4213 |
+
#### Usage
|
| 4214 |
+
|
| 4215 |
+
```python
|
| 4216 |
+
import torch
|
| 4217 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 4218 |
+
from diffusers.utils import load_image
|
| 4219 |
+
from PIL import Image
|
| 4220 |
+
from torchvision import transforms
|
| 4221 |
+
|
| 4222 |
+
from pipeline_hunyuandit_differential_img2img import (
|
| 4223 |
+
HunyuanDiTDifferentialImg2ImgPipeline,
|
| 4224 |
+
)
|
| 4225 |
+
|
| 4226 |
+
|
| 4227 |
+
pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained(
|
| 4228 |
+
"Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
|
| 4229 |
+
).to("cuda")
|
| 4230 |
+
|
| 4231 |
+
|
| 4232 |
+
source_image = load_image(
|
| 4233 |
+
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png"
|
| 4234 |
+
)
|
| 4235 |
+
map = load_image(
|
| 4236 |
+
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png"
|
| 4237 |
+
)
|
| 4238 |
+
prompt = "a green pear"
|
| 4239 |
+
negative_prompt = "blurry"
|
| 4240 |
+
|
| 4241 |
+
image = pipe(
|
| 4242 |
+
prompt=prompt,
|
| 4243 |
+
negative_prompt=negative_prompt,
|
| 4244 |
+
image=source_image,
|
| 4245 |
+
num_inference_steps=28,
|
| 4246 |
+
guidance_scale=4.5,
|
| 4247 |
+
strength=1.0,
|
| 4248 |
+
map=map,
|
| 4249 |
+
).images[0]
|
| 4250 |
+
```
|
| 4251 |
+
|
| 4252 |
+
|  |  |  |
|
| 4253 |
+
| ------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------- |
|
| 4254 |
+
| Gradient | Input | Output |
|
| 4255 |
+
|
| 4256 |
+
A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
|
| 4257 |
|
| 4258 |
# Perturbed-Attention Guidance
|
| 4259 |
|
|
|
|
| 4330 |
|
| 4331 |
`pag_scale` : guidance scale of PAG (ex: 5.0)
|
| 4332 |
|
| 4333 |
+
`pag_applied_layers_index` : index of the layer to apply perturbation (ex: ['m0'])
|
main/pipeline_hunyuandit_differential_img2img.py
ADDED
|
@@ -0,0 +1,1144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
from transformers import (
|
| 21 |
+
BertModel,
|
| 22 |
+
BertTokenizer,
|
| 23 |
+
CLIPImageProcessor,
|
| 24 |
+
MT5Tokenizer,
|
| 25 |
+
T5EncoderModel,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 29 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 30 |
+
from diffusers.models import AutoencoderKL, HunyuanDiT2DModel
|
| 31 |
+
from diffusers.models.embeddings import get_2d_rotary_pos_embed
|
| 32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 33 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 34 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
| 35 |
+
StableDiffusionSafetyChecker,
|
| 36 |
+
)
|
| 37 |
+
from diffusers.schedulers import DDPMScheduler
|
| 38 |
+
from diffusers.utils import (
|
| 39 |
+
deprecate,
|
| 40 |
+
is_torch_xla_available,
|
| 41 |
+
logging,
|
| 42 |
+
replace_example_docstring,
|
| 43 |
+
)
|
| 44 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if is_torch_xla_available():
|
| 48 |
+
import torch_xla.core.xla_model as xm
|
| 49 |
+
|
| 50 |
+
XLA_AVAILABLE = True
|
| 51 |
+
else:
|
| 52 |
+
XLA_AVAILABLE = False
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 56 |
+
|
| 57 |
+
EXAMPLE_DOC_STRING = """
|
| 58 |
+
Examples:
|
| 59 |
+
```py
|
| 60 |
+
>>> import torch
|
| 61 |
+
>>> from diffusers import FlowMatchEulerDiscreteScheduler
|
| 62 |
+
>>> from diffusers.utils import load_image
|
| 63 |
+
>>> from PIL import Image
|
| 64 |
+
>>> from torchvision import transforms
|
| 65 |
+
>>> from pipeline_hunyuandit_differential_img2img import HunyuanDiTDifferentialImg2ImgPipeline
|
| 66 |
+
>>> pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained(
|
| 67 |
+
>>> "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
|
| 68 |
+
>>> ).to("cuda")
|
| 69 |
+
>>> source_image = load_image(
|
| 70 |
+
>>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png"
|
| 71 |
+
>>> )
|
| 72 |
+
>>> map = load_image(
|
| 73 |
+
>>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png"
|
| 74 |
+
>>> )
|
| 75 |
+
>>> prompt = "a green pear"
|
| 76 |
+
>>> negative_prompt = "blurry"
|
| 77 |
+
>>> image = pipe(
|
| 78 |
+
>>> prompt=prompt,
|
| 79 |
+
>>> negative_prompt=negative_prompt,
|
| 80 |
+
>>> image=source_image,
|
| 81 |
+
>>> num_inference_steps=28,
|
| 82 |
+
>>> guidance_scale=4.5,
|
| 83 |
+
>>> strength=1.0,
|
| 84 |
+
>>> map=map,
|
| 85 |
+
>>> ).images[0]
|
| 86 |
+
|
| 87 |
+
```
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
STANDARD_RATIO = np.array(
|
| 91 |
+
[
|
| 92 |
+
1.0, # 1:1
|
| 93 |
+
4.0 / 3.0, # 4:3
|
| 94 |
+
3.0 / 4.0, # 3:4
|
| 95 |
+
16.0 / 9.0, # 16:9
|
| 96 |
+
9.0 / 16.0, # 9:16
|
| 97 |
+
]
|
| 98 |
+
)
|
| 99 |
+
STANDARD_SHAPE = [
|
| 100 |
+
[(1024, 1024), (1280, 1280)], # 1:1
|
| 101 |
+
[(1024, 768), (1152, 864), (1280, 960)], # 4:3
|
| 102 |
+
[(768, 1024), (864, 1152), (960, 1280)], # 3:4
|
| 103 |
+
[(1280, 768)], # 16:9
|
| 104 |
+
[(768, 1280)], # 9:16
|
| 105 |
+
]
|
| 106 |
+
STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
|
| 107 |
+
SUPPORTED_SHAPE = [
|
| 108 |
+
(1024, 1024),
|
| 109 |
+
(1280, 1280), # 1:1
|
| 110 |
+
(1024, 768),
|
| 111 |
+
(1152, 864),
|
| 112 |
+
(1280, 960), # 4:3
|
| 113 |
+
(768, 1024),
|
| 114 |
+
(864, 1152),
|
| 115 |
+
(960, 1280), # 3:4
|
| 116 |
+
(1280, 768), # 16:9
|
| 117 |
+
(768, 1280), # 9:16
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def map_to_standard_shapes(target_width, target_height):
|
| 122 |
+
target_ratio = target_width / target_height
|
| 123 |
+
closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
|
| 124 |
+
closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
|
| 125 |
+
width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
|
| 126 |
+
return width, height
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def get_resize_crop_region_for_grid(src, tgt_size):
|
| 130 |
+
th = tw = tgt_size
|
| 131 |
+
h, w = src
|
| 132 |
+
|
| 133 |
+
r = h / w
|
| 134 |
+
|
| 135 |
+
# resize
|
| 136 |
+
if r > 1:
|
| 137 |
+
resize_height = th
|
| 138 |
+
resize_width = int(round(th / h * w))
|
| 139 |
+
else:
|
| 140 |
+
resize_width = tw
|
| 141 |
+
resize_height = int(round(tw / w * h))
|
| 142 |
+
|
| 143 |
+
crop_top = int(round((th - resize_height) / 2.0))
|
| 144 |
+
crop_left = int(round((tw - resize_width) / 2.0))
|
| 145 |
+
|
| 146 |
+
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
| 150 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
| 151 |
+
"""
|
| 152 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
| 153 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
| 154 |
+
"""
|
| 155 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
| 156 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
| 157 |
+
# rescale the results from guidance (fixes overexposure)
|
| 158 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
| 159 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
| 160 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
| 161 |
+
return noise_cfg
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 165 |
+
def retrieve_latents(
|
| 166 |
+
encoder_output: torch.Tensor,
|
| 167 |
+
generator: Optional[torch.Generator] = None,
|
| 168 |
+
sample_mode: str = "sample",
|
| 169 |
+
):
|
| 170 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 171 |
+
return encoder_output.latent_dist.sample(generator)
|
| 172 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 173 |
+
return encoder_output.latent_dist.mode()
|
| 174 |
+
elif hasattr(encoder_output, "latents"):
|
| 175 |
+
return encoder_output.latents
|
| 176 |
+
else:
|
| 177 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 181 |
+
def retrieve_timesteps(
|
| 182 |
+
scheduler,
|
| 183 |
+
num_inference_steps: Optional[int] = None,
|
| 184 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 185 |
+
timesteps: Optional[List[int]] = None,
|
| 186 |
+
sigmas: Optional[List[float]] = None,
|
| 187 |
+
**kwargs,
|
| 188 |
+
):
|
| 189 |
+
"""
|
| 190 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 191 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
scheduler (`SchedulerMixin`):
|
| 195 |
+
The scheduler to get timesteps from.
|
| 196 |
+
num_inference_steps (`int`):
|
| 197 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 198 |
+
must be `None`.
|
| 199 |
+
device (`str` or `torch.device`, *optional*):
|
| 200 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 201 |
+
timesteps (`List[int]`, *optional*):
|
| 202 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 203 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 204 |
+
sigmas (`List[float]`, *optional*):
|
| 205 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 206 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 210 |
+
second element is the number of inference steps.
|
| 211 |
+
"""
|
| 212 |
+
if timesteps is not None and sigmas is not None:
|
| 213 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 214 |
+
if timesteps is not None:
|
| 215 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 216 |
+
if not accepts_timesteps:
|
| 217 |
+
raise ValueError(
|
| 218 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 219 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 220 |
+
)
|
| 221 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 222 |
+
timesteps = scheduler.timesteps
|
| 223 |
+
num_inference_steps = len(timesteps)
|
| 224 |
+
elif sigmas is not None:
|
| 225 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 226 |
+
if not accept_sigmas:
|
| 227 |
+
raise ValueError(
|
| 228 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 229 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 230 |
+
)
|
| 231 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 232 |
+
timesteps = scheduler.timesteps
|
| 233 |
+
num_inference_steps = len(timesteps)
|
| 234 |
+
else:
|
| 235 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 236 |
+
timesteps = scheduler.timesteps
|
| 237 |
+
return timesteps, num_inference_steps
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
| 241 |
+
r"""
|
| 242 |
+
Differential Pipeline for English/Chinese-to-image generation using HunyuanDiT.
|
| 243 |
+
|
| 244 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 245 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 246 |
+
|
| 247 |
+
HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
|
| 248 |
+
ourselves)
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
vae ([`AutoencoderKL`]):
|
| 252 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
|
| 253 |
+
`sdxl-vae-fp16-fix`.
|
| 254 |
+
text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
|
| 255 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
| 256 |
+
HunyuanDiT uses a fine-tuned [bilingual CLIP].
|
| 257 |
+
tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
|
| 258 |
+
A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
|
| 259 |
+
transformer ([`HunyuanDiT2DModel`]):
|
| 260 |
+
The HunyuanDiT model designed by Tencent Hunyuan.
|
| 261 |
+
text_encoder_2 (`T5EncoderModel`):
|
| 262 |
+
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
| 263 |
+
tokenizer_2 (`MT5Tokenizer`):
|
| 264 |
+
The tokenizer for the mT5 embedder.
|
| 265 |
+
scheduler ([`DDPMScheduler`]):
|
| 266 |
+
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
| 270 |
+
_optional_components = [
|
| 271 |
+
"safety_checker",
|
| 272 |
+
"feature_extractor",
|
| 273 |
+
"text_encoder_2",
|
| 274 |
+
"tokenizer_2",
|
| 275 |
+
"text_encoder",
|
| 276 |
+
"tokenizer",
|
| 277 |
+
]
|
| 278 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
| 279 |
+
_callback_tensor_inputs = [
|
| 280 |
+
"latents",
|
| 281 |
+
"prompt_embeds",
|
| 282 |
+
"negative_prompt_embeds",
|
| 283 |
+
"prompt_embeds_2",
|
| 284 |
+
"negative_prompt_embeds_2",
|
| 285 |
+
]
|
| 286 |
+
|
| 287 |
+
def __init__(
|
| 288 |
+
self,
|
| 289 |
+
vae: AutoencoderKL,
|
| 290 |
+
text_encoder: BertModel,
|
| 291 |
+
tokenizer: BertTokenizer,
|
| 292 |
+
transformer: HunyuanDiT2DModel,
|
| 293 |
+
scheduler: DDPMScheduler,
|
| 294 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 295 |
+
feature_extractor: CLIPImageProcessor,
|
| 296 |
+
requires_safety_checker: bool = True,
|
| 297 |
+
text_encoder_2=T5EncoderModel,
|
| 298 |
+
tokenizer_2=MT5Tokenizer,
|
| 299 |
+
):
|
| 300 |
+
super().__init__()
|
| 301 |
+
|
| 302 |
+
self.register_modules(
|
| 303 |
+
vae=vae,
|
| 304 |
+
text_encoder=text_encoder,
|
| 305 |
+
tokenizer=tokenizer,
|
| 306 |
+
tokenizer_2=tokenizer_2,
|
| 307 |
+
transformer=transformer,
|
| 308 |
+
scheduler=scheduler,
|
| 309 |
+
safety_checker=safety_checker,
|
| 310 |
+
feature_extractor=feature_extractor,
|
| 311 |
+
text_encoder_2=text_encoder_2,
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
if safety_checker is None and requires_safety_checker:
|
| 315 |
+
logger.warning(
|
| 316 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 317 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 318 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 319 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 320 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 321 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
if safety_checker is not None and feature_extractor is None:
|
| 325 |
+
raise ValueError(
|
| 326 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 327 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
self.vae_scale_factor = (
|
| 331 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
| 332 |
+
)
|
| 333 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 334 |
+
self.mask_processor = VaeImageProcessor(
|
| 335 |
+
vae_scale_factor=self.vae_scale_factor,
|
| 336 |
+
do_normalize=False,
|
| 337 |
+
do_convert_grayscale=True,
|
| 338 |
+
)
|
| 339 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 340 |
+
self.default_sample_size = (
|
| 341 |
+
self.transformer.config.sample_size
|
| 342 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
| 343 |
+
else 128
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
# copied from diffusers.pipelines.huanyuandit.pipeline_huanyuandit.HunyuanDiTPipeline.encode_prompt
|
| 347 |
+
def encode_prompt(
|
| 348 |
+
self,
|
| 349 |
+
prompt: str,
|
| 350 |
+
device: torch.device = None,
|
| 351 |
+
dtype: torch.dtype = None,
|
| 352 |
+
num_images_per_prompt: int = 1,
|
| 353 |
+
do_classifier_free_guidance: bool = True,
|
| 354 |
+
negative_prompt: Optional[str] = None,
|
| 355 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 356 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 357 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 358 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 359 |
+
max_sequence_length: Optional[int] = None,
|
| 360 |
+
text_encoder_index: int = 0,
|
| 361 |
+
):
|
| 362 |
+
r"""
|
| 363 |
+
Encodes the prompt into text encoder hidden states.
|
| 364 |
+
|
| 365 |
+
Args:
|
| 366 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 367 |
+
prompt to be encoded
|
| 368 |
+
device: (`torch.device`):
|
| 369 |
+
torch device
|
| 370 |
+
dtype (`torch.dtype`):
|
| 371 |
+
torch dtype
|
| 372 |
+
num_images_per_prompt (`int`):
|
| 373 |
+
number of images that should be generated per prompt
|
| 374 |
+
do_classifier_free_guidance (`bool`):
|
| 375 |
+
whether to use classifier free guidance or not
|
| 376 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 377 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 378 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 379 |
+
less than `1`).
|
| 380 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 381 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 382 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 383 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 384 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 385 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 386 |
+
argument.
|
| 387 |
+
prompt_attention_mask (`torch.Tensor`, *optional*):
|
| 388 |
+
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
|
| 389 |
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
| 390 |
+
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
|
| 391 |
+
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
|
| 392 |
+
text_encoder_index (`int`, *optional*):
|
| 393 |
+
Index of the text encoder to use. `0` for clip and `1` for T5.
|
| 394 |
+
"""
|
| 395 |
+
if dtype is None:
|
| 396 |
+
if self.text_encoder_2 is not None:
|
| 397 |
+
dtype = self.text_encoder_2.dtype
|
| 398 |
+
elif self.transformer is not None:
|
| 399 |
+
dtype = self.transformer.dtype
|
| 400 |
+
else:
|
| 401 |
+
dtype = None
|
| 402 |
+
|
| 403 |
+
if device is None:
|
| 404 |
+
device = self._execution_device
|
| 405 |
+
|
| 406 |
+
tokenizers = [self.tokenizer, self.tokenizer_2]
|
| 407 |
+
text_encoders = [self.text_encoder, self.text_encoder_2]
|
| 408 |
+
|
| 409 |
+
tokenizer = tokenizers[text_encoder_index]
|
| 410 |
+
text_encoder = text_encoders[text_encoder_index]
|
| 411 |
+
|
| 412 |
+
if max_sequence_length is None:
|
| 413 |
+
if text_encoder_index == 0:
|
| 414 |
+
max_length = 77
|
| 415 |
+
if text_encoder_index == 1:
|
| 416 |
+
max_length = 256
|
| 417 |
+
else:
|
| 418 |
+
max_length = max_sequence_length
|
| 419 |
+
|
| 420 |
+
if prompt is not None and isinstance(prompt, str):
|
| 421 |
+
batch_size = 1
|
| 422 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 423 |
+
batch_size = len(prompt)
|
| 424 |
+
else:
|
| 425 |
+
batch_size = prompt_embeds.shape[0]
|
| 426 |
+
|
| 427 |
+
if prompt_embeds is None:
|
| 428 |
+
text_inputs = tokenizer(
|
| 429 |
+
prompt,
|
| 430 |
+
padding="max_length",
|
| 431 |
+
max_length=max_length,
|
| 432 |
+
truncation=True,
|
| 433 |
+
return_attention_mask=True,
|
| 434 |
+
return_tensors="pt",
|
| 435 |
+
)
|
| 436 |
+
text_input_ids = text_inputs.input_ids
|
| 437 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 438 |
+
|
| 439 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 440 |
+
text_input_ids, untruncated_ids
|
| 441 |
+
):
|
| 442 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
| 443 |
+
logger.warning(
|
| 444 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 445 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
prompt_attention_mask = text_inputs.attention_mask.to(device)
|
| 449 |
+
prompt_embeds = text_encoder(
|
| 450 |
+
text_input_ids.to(device),
|
| 451 |
+
attention_mask=prompt_attention_mask,
|
| 452 |
+
)
|
| 453 |
+
prompt_embeds = prompt_embeds[0]
|
| 454 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
| 455 |
+
|
| 456 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 457 |
+
|
| 458 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 459 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 460 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 461 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 462 |
+
|
| 463 |
+
# get unconditional embeddings for classifier free guidance
|
| 464 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 465 |
+
uncond_tokens: List[str]
|
| 466 |
+
if negative_prompt is None:
|
| 467 |
+
uncond_tokens = [""] * batch_size
|
| 468 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
| 469 |
+
raise TypeError(
|
| 470 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 471 |
+
f" {type(prompt)}."
|
| 472 |
+
)
|
| 473 |
+
elif isinstance(negative_prompt, str):
|
| 474 |
+
uncond_tokens = [negative_prompt]
|
| 475 |
+
elif batch_size != len(negative_prompt):
|
| 476 |
+
raise ValueError(
|
| 477 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 478 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 479 |
+
" the batch size of `prompt`."
|
| 480 |
+
)
|
| 481 |
+
else:
|
| 482 |
+
uncond_tokens = negative_prompt
|
| 483 |
+
|
| 484 |
+
max_length = prompt_embeds.shape[1]
|
| 485 |
+
uncond_input = tokenizer(
|
| 486 |
+
uncond_tokens,
|
| 487 |
+
padding="max_length",
|
| 488 |
+
max_length=max_length,
|
| 489 |
+
truncation=True,
|
| 490 |
+
return_tensors="pt",
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
|
| 494 |
+
negative_prompt_embeds = text_encoder(
|
| 495 |
+
uncond_input.input_ids.to(device),
|
| 496 |
+
attention_mask=negative_prompt_attention_mask,
|
| 497 |
+
)
|
| 498 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 499 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
| 500 |
+
|
| 501 |
+
if do_classifier_free_guidance:
|
| 502 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 503 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 504 |
+
|
| 505 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
| 506 |
+
|
| 507 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 508 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 509 |
+
|
| 510 |
+
return (
|
| 511 |
+
prompt_embeds,
|
| 512 |
+
negative_prompt_embeds,
|
| 513 |
+
prompt_attention_mask,
|
| 514 |
+
negative_prompt_attention_mask,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
| 518 |
+
def run_safety_checker(self, image, device, dtype):
|
| 519 |
+
if self.safety_checker is None:
|
| 520 |
+
has_nsfw_concept = None
|
| 521 |
+
else:
|
| 522 |
+
if torch.is_tensor(image):
|
| 523 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
| 524 |
+
else:
|
| 525 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
| 526 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
| 527 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 528 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 529 |
+
)
|
| 530 |
+
return image, has_nsfw_concept
|
| 531 |
+
|
| 532 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 533 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 534 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 535 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 536 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 537 |
+
# and should be between [0, 1]
|
| 538 |
+
|
| 539 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 540 |
+
extra_step_kwargs = {}
|
| 541 |
+
if accepts_eta:
|
| 542 |
+
extra_step_kwargs["eta"] = eta
|
| 543 |
+
|
| 544 |
+
# check if the scheduler accepts generator
|
| 545 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 546 |
+
if accepts_generator:
|
| 547 |
+
extra_step_kwargs["generator"] = generator
|
| 548 |
+
return extra_step_kwargs
|
| 549 |
+
|
| 550 |
+
def check_inputs(
|
| 551 |
+
self,
|
| 552 |
+
prompt,
|
| 553 |
+
height,
|
| 554 |
+
width,
|
| 555 |
+
negative_prompt=None,
|
| 556 |
+
prompt_embeds=None,
|
| 557 |
+
negative_prompt_embeds=None,
|
| 558 |
+
prompt_attention_mask=None,
|
| 559 |
+
negative_prompt_attention_mask=None,
|
| 560 |
+
prompt_embeds_2=None,
|
| 561 |
+
negative_prompt_embeds_2=None,
|
| 562 |
+
prompt_attention_mask_2=None,
|
| 563 |
+
negative_prompt_attention_mask_2=None,
|
| 564 |
+
callback_on_step_end_tensor_inputs=None,
|
| 565 |
+
):
|
| 566 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 567 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 568 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 569 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 570 |
+
):
|
| 571 |
+
raise ValueError(
|
| 572 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
if prompt is not None and prompt_embeds is not None:
|
| 576 |
+
raise ValueError(
|
| 577 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 578 |
+
" only forward one of the two."
|
| 579 |
+
)
|
| 580 |
+
elif prompt is None and prompt_embeds is None:
|
| 581 |
+
raise ValueError(
|
| 582 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 583 |
+
)
|
| 584 |
+
elif prompt is None and prompt_embeds_2 is None:
|
| 585 |
+
raise ValueError(
|
| 586 |
+
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
|
| 587 |
+
)
|
| 588 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 589 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 590 |
+
|
| 591 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
| 592 |
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
| 593 |
+
|
| 594 |
+
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
|
| 595 |
+
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
|
| 596 |
+
|
| 597 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 598 |
+
raise ValueError(
|
| 599 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 600 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
| 604 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
| 605 |
+
|
| 606 |
+
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
|
| 607 |
+
raise ValueError(
|
| 608 |
+
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
|
| 609 |
+
)
|
| 610 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 611 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 612 |
+
raise ValueError(
|
| 613 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 614 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 615 |
+
f" {negative_prompt_embeds.shape}."
|
| 616 |
+
)
|
| 617 |
+
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
|
| 618 |
+
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
|
| 619 |
+
raise ValueError(
|
| 620 |
+
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
|
| 621 |
+
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
|
| 622 |
+
f" {negative_prompt_embeds_2.shape}."
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
| 626 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
| 627 |
+
# get the original timestep using init_timestep
|
| 628 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 629 |
+
|
| 630 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 631 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
| 632 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
| 633 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
| 634 |
+
|
| 635 |
+
return timesteps, num_inference_steps - t_start
|
| 636 |
+
|
| 637 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
|
| 638 |
+
def prepare_latents(
|
| 639 |
+
self,
|
| 640 |
+
batch_size,
|
| 641 |
+
num_channels_latents,
|
| 642 |
+
height,
|
| 643 |
+
width,
|
| 644 |
+
image,
|
| 645 |
+
timestep,
|
| 646 |
+
dtype,
|
| 647 |
+
device,
|
| 648 |
+
generator=None,
|
| 649 |
+
):
|
| 650 |
+
shape = (
|
| 651 |
+
batch_size,
|
| 652 |
+
num_channels_latents,
|
| 653 |
+
int(height) // self.vae_scale_factor,
|
| 654 |
+
int(width) // self.vae_scale_factor,
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
image = image.to(device=device, dtype=dtype)
|
| 658 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 659 |
+
raise ValueError(
|
| 660 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 661 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 662 |
+
)
|
| 663 |
+
elif isinstance(generator, list):
|
| 664 |
+
init_latents = [
|
| 665 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size)
|
| 666 |
+
]
|
| 667 |
+
init_latents = torch.cat(init_latents, dim=0)
|
| 668 |
+
|
| 669 |
+
else:
|
| 670 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
| 671 |
+
|
| 672 |
+
init_latents = init_latents * self.vae.config.scaling_factor
|
| 673 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
| 674 |
+
# expand init_latents for batch_size
|
| 675 |
+
deprecation_message = (
|
| 676 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
| 677 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
| 678 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
| 679 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
| 680 |
+
)
|
| 681 |
+
deprecate(
|
| 682 |
+
"len(prompt) != len(image)",
|
| 683 |
+
"1.0.0",
|
| 684 |
+
deprecation_message,
|
| 685 |
+
standard_warn=False,
|
| 686 |
+
)
|
| 687 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
| 688 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
| 689 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
| 690 |
+
raise ValueError(
|
| 691 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
| 692 |
+
)
|
| 693 |
+
else:
|
| 694 |
+
init_latents = torch.cat([init_latents], dim=0)
|
| 695 |
+
|
| 696 |
+
shape = init_latents.shape
|
| 697 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 698 |
+
|
| 699 |
+
# get latents
|
| 700 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
| 701 |
+
latents = init_latents
|
| 702 |
+
|
| 703 |
+
return latents
|
| 704 |
+
|
| 705 |
+
@property
|
| 706 |
+
def guidance_scale(self):
|
| 707 |
+
return self._guidance_scale
|
| 708 |
+
|
| 709 |
+
@property
|
| 710 |
+
def guidance_rescale(self):
|
| 711 |
+
return self._guidance_rescale
|
| 712 |
+
|
| 713 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 714 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 715 |
+
# corresponds to doing no classifier free guidance.
|
| 716 |
+
@property
|
| 717 |
+
def do_classifier_free_guidance(self):
|
| 718 |
+
return self._guidance_scale > 1
|
| 719 |
+
|
| 720 |
+
@property
|
| 721 |
+
def num_timesteps(self):
|
| 722 |
+
return self._num_timesteps
|
| 723 |
+
|
| 724 |
+
@property
|
| 725 |
+
def interrupt(self):
|
| 726 |
+
return self._interrupt
|
| 727 |
+
|
| 728 |
+
@torch.no_grad()
|
| 729 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 730 |
+
def __call__(
|
| 731 |
+
self,
|
| 732 |
+
prompt: Union[str, List[str]] = None,
|
| 733 |
+
image: PipelineImageInput = None,
|
| 734 |
+
strength: float = 0.8,
|
| 735 |
+
height: Optional[int] = None,
|
| 736 |
+
width: Optional[int] = None,
|
| 737 |
+
num_inference_steps: Optional[int] = 50,
|
| 738 |
+
timesteps: List[int] = None,
|
| 739 |
+
sigmas: List[float] = None,
|
| 740 |
+
guidance_scale: Optional[float] = 5.0,
|
| 741 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 742 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 743 |
+
eta: Optional[float] = 0.0,
|
| 744 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 745 |
+
latents: Optional[torch.Tensor] = None,
|
| 746 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 747 |
+
prompt_embeds_2: Optional[torch.Tensor] = None,
|
| 748 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 749 |
+
negative_prompt_embeds_2: Optional[torch.Tensor] = None,
|
| 750 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 751 |
+
prompt_attention_mask_2: Optional[torch.Tensor] = None,
|
| 752 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 753 |
+
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
|
| 754 |
+
output_type: Optional[str] = "pil",
|
| 755 |
+
return_dict: bool = True,
|
| 756 |
+
callback_on_step_end: Optional[
|
| 757 |
+
Union[
|
| 758 |
+
Callable[[int, int, Dict], None],
|
| 759 |
+
PipelineCallback,
|
| 760 |
+
MultiPipelineCallbacks,
|
| 761 |
+
]
|
| 762 |
+
] = None,
|
| 763 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 764 |
+
guidance_rescale: float = 0.0,
|
| 765 |
+
original_size: Optional[Tuple[int, int]] = (1024, 1024),
|
| 766 |
+
target_size: Optional[Tuple[int, int]] = None,
|
| 767 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 768 |
+
use_resolution_binning: bool = True,
|
| 769 |
+
map: PipelineImageInput = None,
|
| 770 |
+
denoising_start: Optional[float] = None,
|
| 771 |
+
):
|
| 772 |
+
r"""
|
| 773 |
+
The call function to the pipeline for generation with HunyuanDiT.
|
| 774 |
+
|
| 775 |
+
Args:
|
| 776 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 777 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 778 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
| 779 |
+
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
| 780 |
+
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
| 781 |
+
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
| 782 |
+
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
| 783 |
+
latents as `image`, but if passing latents directly it is not encoded again.
|
| 784 |
+
strength (`float`, *optional*, defaults to 0.8):
|
| 785 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
| 786 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
| 787 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
| 788 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
| 789 |
+
essentially ignores `image`.
|
| 790 |
+
height (`int`):
|
| 791 |
+
The height in pixels of the generated image.
|
| 792 |
+
width (`int`):
|
| 793 |
+
The width in pixels of the generated image.
|
| 794 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 795 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 796 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
| 797 |
+
timesteps (`List[int]`, *optional*):
|
| 798 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 799 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 800 |
+
passed will be used. Must be in descending order.
|
| 801 |
+
sigmas (`List[float]`, *optional*):
|
| 802 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 803 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 804 |
+
will be used.
|
| 805 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 806 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 807 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 808 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 809 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 810 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 811 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 812 |
+
The number of images to generate per prompt.
|
| 813 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 814 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
| 815 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
| 816 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 817 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 818 |
+
generation deterministic.
|
| 819 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 820 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 821 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 822 |
+
prompt_embeds_2 (`torch.Tensor`, *optional*):
|
| 823 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 824 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 825 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 826 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 827 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 828 |
+
negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
|
| 829 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 830 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 831 |
+
prompt_attention_mask (`torch.Tensor`, *optional*):
|
| 832 |
+
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
|
| 833 |
+
prompt_attention_mask_2 (`torch.Tensor`, *optional*):
|
| 834 |
+
Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
|
| 835 |
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
| 836 |
+
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
|
| 837 |
+
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
|
| 838 |
+
Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
|
| 839 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 840 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 841 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 842 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 843 |
+
plain tuple.
|
| 844 |
+
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 845 |
+
A callback function or a list of callback functions to be called at the end of each denoising step.
|
| 846 |
+
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
|
| 847 |
+
A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
|
| 848 |
+
inputs will be passed.
|
| 849 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
| 850 |
+
Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
|
| 851 |
+
Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
| 852 |
+
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
|
| 853 |
+
The original size of the image. Used to calculate the time ids.
|
| 854 |
+
target_size (`Tuple[int, int]`, *optional*):
|
| 855 |
+
The target size of the image. Used to calculate the time ids.
|
| 856 |
+
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
|
| 857 |
+
The top left coordinates of the crop. Used to calculate the time ids.
|
| 858 |
+
use_resolution_binning (`bool`, *optional*, defaults to `True`):
|
| 859 |
+
Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
|
| 860 |
+
standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
|
| 861 |
+
768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
|
| 862 |
+
denoising_start (`float`, *optional*):
|
| 863 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 864 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
| 865 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
| 866 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
| 867 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
| 868 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
| 869 |
+
Examples:
|
| 870 |
+
|
| 871 |
+
Returns:
|
| 872 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 873 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
| 874 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
| 875 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
| 876 |
+
"not-safe-for-work" (nsfw) content.
|
| 877 |
+
"""
|
| 878 |
+
|
| 879 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 880 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 881 |
+
|
| 882 |
+
# 0. default height and width
|
| 883 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 884 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 885 |
+
height = int((height // 16) * 16)
|
| 886 |
+
width = int((width // 16) * 16)
|
| 887 |
+
|
| 888 |
+
if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
|
| 889 |
+
width, height = map_to_standard_shapes(width, height)
|
| 890 |
+
height = int(height)
|
| 891 |
+
width = int(width)
|
| 892 |
+
logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
|
| 893 |
+
|
| 894 |
+
# 1. Check inputs. Raise error if not correct
|
| 895 |
+
self.check_inputs(
|
| 896 |
+
prompt,
|
| 897 |
+
height,
|
| 898 |
+
width,
|
| 899 |
+
negative_prompt,
|
| 900 |
+
prompt_embeds,
|
| 901 |
+
negative_prompt_embeds,
|
| 902 |
+
prompt_attention_mask,
|
| 903 |
+
negative_prompt_attention_mask,
|
| 904 |
+
prompt_embeds_2,
|
| 905 |
+
negative_prompt_embeds_2,
|
| 906 |
+
prompt_attention_mask_2,
|
| 907 |
+
negative_prompt_attention_mask_2,
|
| 908 |
+
callback_on_step_end_tensor_inputs,
|
| 909 |
+
)
|
| 910 |
+
self._guidance_scale = guidance_scale
|
| 911 |
+
self._guidance_rescale = guidance_rescale
|
| 912 |
+
self._interrupt = False
|
| 913 |
+
|
| 914 |
+
# 2. Define call parameters
|
| 915 |
+
if prompt is not None and isinstance(prompt, str):
|
| 916 |
+
batch_size = 1
|
| 917 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 918 |
+
batch_size = len(prompt)
|
| 919 |
+
else:
|
| 920 |
+
batch_size = prompt_embeds.shape[0]
|
| 921 |
+
|
| 922 |
+
device = self._execution_device
|
| 923 |
+
|
| 924 |
+
# 3. Encode input prompt
|
| 925 |
+
|
| 926 |
+
(
|
| 927 |
+
prompt_embeds,
|
| 928 |
+
negative_prompt_embeds,
|
| 929 |
+
prompt_attention_mask,
|
| 930 |
+
negative_prompt_attention_mask,
|
| 931 |
+
) = self.encode_prompt(
|
| 932 |
+
prompt=prompt,
|
| 933 |
+
device=device,
|
| 934 |
+
dtype=self.transformer.dtype,
|
| 935 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 936 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 937 |
+
negative_prompt=negative_prompt,
|
| 938 |
+
prompt_embeds=prompt_embeds,
|
| 939 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 940 |
+
prompt_attention_mask=prompt_attention_mask,
|
| 941 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
| 942 |
+
max_sequence_length=77,
|
| 943 |
+
text_encoder_index=0,
|
| 944 |
+
)
|
| 945 |
+
(
|
| 946 |
+
prompt_embeds_2,
|
| 947 |
+
negative_prompt_embeds_2,
|
| 948 |
+
prompt_attention_mask_2,
|
| 949 |
+
negative_prompt_attention_mask_2,
|
| 950 |
+
) = self.encode_prompt(
|
| 951 |
+
prompt=prompt,
|
| 952 |
+
device=device,
|
| 953 |
+
dtype=self.transformer.dtype,
|
| 954 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 955 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 956 |
+
negative_prompt=negative_prompt,
|
| 957 |
+
prompt_embeds=prompt_embeds_2,
|
| 958 |
+
negative_prompt_embeds=negative_prompt_embeds_2,
|
| 959 |
+
prompt_attention_mask=prompt_attention_mask_2,
|
| 960 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask_2,
|
| 961 |
+
max_sequence_length=256,
|
| 962 |
+
text_encoder_index=1,
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
# 4. Preprocess image
|
| 966 |
+
init_image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
| 967 |
+
map = self.mask_processor.preprocess(
|
| 968 |
+
map,
|
| 969 |
+
height=height // self.vae_scale_factor,
|
| 970 |
+
width=width // self.vae_scale_factor,
|
| 971 |
+
).to(device)
|
| 972 |
+
|
| 973 |
+
# 5. Prepare timesteps
|
| 974 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 975 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 976 |
+
)
|
| 977 |
+
|
| 978 |
+
# begin diff diff change
|
| 979 |
+
total_time_steps = num_inference_steps
|
| 980 |
+
# end diff diff change
|
| 981 |
+
|
| 982 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
| 983 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
| 984 |
+
|
| 985 |
+
# 6. Prepare latent variables
|
| 986 |
+
num_channels_latents = self.transformer.config.in_channels
|
| 987 |
+
latents = self.prepare_latents(
|
| 988 |
+
batch_size * num_images_per_prompt,
|
| 989 |
+
num_channels_latents,
|
| 990 |
+
height,
|
| 991 |
+
width,
|
| 992 |
+
init_image,
|
| 993 |
+
latent_timestep,
|
| 994 |
+
prompt_embeds.dtype,
|
| 995 |
+
device,
|
| 996 |
+
generator,
|
| 997 |
+
)
|
| 998 |
+
|
| 999 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1000 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1001 |
+
|
| 1002 |
+
# 8. create image_rotary_emb, style embedding & time ids
|
| 1003 |
+
grid_height = height // 8 // self.transformer.config.patch_size
|
| 1004 |
+
grid_width = width // 8 // self.transformer.config.patch_size
|
| 1005 |
+
base_size = 512 // 8 // self.transformer.config.patch_size
|
| 1006 |
+
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
|
| 1007 |
+
image_rotary_emb = get_2d_rotary_pos_embed(
|
| 1008 |
+
self.transformer.inner_dim // self.transformer.num_heads,
|
| 1009 |
+
grid_crops_coords,
|
| 1010 |
+
(grid_height, grid_width),
|
| 1011 |
+
)
|
| 1012 |
+
|
| 1013 |
+
style = torch.tensor([0], device=device)
|
| 1014 |
+
|
| 1015 |
+
target_size = target_size or (height, width)
|
| 1016 |
+
add_time_ids = list(original_size + target_size + crops_coords_top_left)
|
| 1017 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
|
| 1018 |
+
|
| 1019 |
+
if self.do_classifier_free_guidance:
|
| 1020 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 1021 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
|
| 1022 |
+
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
|
| 1023 |
+
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
|
| 1024 |
+
add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
|
| 1025 |
+
style = torch.cat([style] * 2, dim=0)
|
| 1026 |
+
|
| 1027 |
+
prompt_embeds = prompt_embeds.to(device=device)
|
| 1028 |
+
prompt_attention_mask = prompt_attention_mask.to(device=device)
|
| 1029 |
+
prompt_embeds_2 = prompt_embeds_2.to(device=device)
|
| 1030 |
+
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
|
| 1031 |
+
add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
|
| 1032 |
+
batch_size * num_images_per_prompt, 1
|
| 1033 |
+
)
|
| 1034 |
+
style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
|
| 1035 |
+
# 9. Denoising loop
|
| 1036 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1037 |
+
# preparations for diff diff
|
| 1038 |
+
original_with_noise = self.prepare_latents(
|
| 1039 |
+
batch_size * num_images_per_prompt,
|
| 1040 |
+
num_channels_latents,
|
| 1041 |
+
height,
|
| 1042 |
+
width,
|
| 1043 |
+
init_image,
|
| 1044 |
+
timesteps,
|
| 1045 |
+
prompt_embeds.dtype,
|
| 1046 |
+
device,
|
| 1047 |
+
generator,
|
| 1048 |
+
)
|
| 1049 |
+
thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps
|
| 1050 |
+
thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device)
|
| 1051 |
+
masks = map.squeeze() > (thresholds + (denoising_start or 0))
|
| 1052 |
+
# end diff diff preparations
|
| 1053 |
+
self._num_timesteps = len(timesteps)
|
| 1054 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1055 |
+
for i, t in enumerate(timesteps):
|
| 1056 |
+
if self.interrupt:
|
| 1057 |
+
continue
|
| 1058 |
+
# diff diff
|
| 1059 |
+
if i == 0 and denoising_start is None:
|
| 1060 |
+
latents = original_with_noise[:1]
|
| 1061 |
+
else:
|
| 1062 |
+
mask = masks[i].unsqueeze(0).to(latents.dtype)
|
| 1063 |
+
mask = mask.unsqueeze(1) # fit shape
|
| 1064 |
+
latents = original_with_noise[i] * mask + latents * (1 - mask)
|
| 1065 |
+
# end diff diff
|
| 1066 |
+
|
| 1067 |
+
# expand the latents if we are doing classifier free guidance
|
| 1068 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 1069 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1070 |
+
|
| 1071 |
+
# expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
|
| 1072 |
+
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
|
| 1073 |
+
dtype=latent_model_input.dtype
|
| 1074 |
+
)
|
| 1075 |
+
|
| 1076 |
+
# predict the noise residual
|
| 1077 |
+
noise_pred = self.transformer(
|
| 1078 |
+
latent_model_input,
|
| 1079 |
+
t_expand,
|
| 1080 |
+
encoder_hidden_states=prompt_embeds,
|
| 1081 |
+
text_embedding_mask=prompt_attention_mask,
|
| 1082 |
+
encoder_hidden_states_t5=prompt_embeds_2,
|
| 1083 |
+
text_embedding_mask_t5=prompt_attention_mask_2,
|
| 1084 |
+
image_meta_size=add_time_ids,
|
| 1085 |
+
style=style,
|
| 1086 |
+
image_rotary_emb=image_rotary_emb,
|
| 1087 |
+
return_dict=False,
|
| 1088 |
+
)[0]
|
| 1089 |
+
|
| 1090 |
+
noise_pred, _ = noise_pred.chunk(2, dim=1)
|
| 1091 |
+
|
| 1092 |
+
# perform guidance
|
| 1093 |
+
if self.do_classifier_free_guidance:
|
| 1094 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1095 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1096 |
+
|
| 1097 |
+
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
| 1098 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 1099 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
| 1100 |
+
|
| 1101 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1102 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1103 |
+
|
| 1104 |
+
if callback_on_step_end is not None:
|
| 1105 |
+
callback_kwargs = {}
|
| 1106 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1107 |
+
callback_kwargs[k] = locals()[k]
|
| 1108 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1109 |
+
|
| 1110 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1111 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1112 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1113 |
+
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
|
| 1114 |
+
negative_prompt_embeds_2 = callback_outputs.pop(
|
| 1115 |
+
"negative_prompt_embeds_2", negative_prompt_embeds_2
|
| 1116 |
+
)
|
| 1117 |
+
|
| 1118 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1119 |
+
progress_bar.update()
|
| 1120 |
+
|
| 1121 |
+
if XLA_AVAILABLE:
|
| 1122 |
+
xm.mark_step()
|
| 1123 |
+
|
| 1124 |
+
if not output_type == "latent":
|
| 1125 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 1126 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1127 |
+
else:
|
| 1128 |
+
image = latents
|
| 1129 |
+
has_nsfw_concept = None
|
| 1130 |
+
|
| 1131 |
+
if has_nsfw_concept is None:
|
| 1132 |
+
do_denormalize = [True] * image.shape[0]
|
| 1133 |
+
else:
|
| 1134 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 1135 |
+
|
| 1136 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 1137 |
+
|
| 1138 |
+
# Offload all models
|
| 1139 |
+
self.maybe_free_model_hooks()
|
| 1140 |
+
|
| 1141 |
+
if not return_dict:
|
| 1142 |
+
return (image, has_nsfw_concept)
|
| 1143 |
+
|
| 1144 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|