|  | from typing import Any, Callable, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL.Image | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from diffusers import StableDiffusionImg2ImgPipeline | 
					
						
						|  | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MaskedStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline): | 
					
						
						|  | debug_save = False | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | image: Union[ | 
					
						
						|  | torch.FloatTensor, | 
					
						
						|  | PIL.Image.Image, | 
					
						
						|  | np.ndarray, | 
					
						
						|  | List[torch.FloatTensor], | 
					
						
						|  | List[PIL.Image.Image], | 
					
						
						|  | List[np.ndarray], | 
					
						
						|  | ] = None, | 
					
						
						|  | strength: float = 0.8, | 
					
						
						|  | num_inference_steps: Optional[int] = 50, | 
					
						
						|  | guidance_scale: Optional[float] = 7.5, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: Optional[float] = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | mask: Union[ | 
					
						
						|  | torch.FloatTensor, | 
					
						
						|  | PIL.Image.Image, | 
					
						
						|  | np.ndarray, | 
					
						
						|  | List[torch.FloatTensor], | 
					
						
						|  | List[PIL.Image.Image], | 
					
						
						|  | List[np.ndarray], | 
					
						
						|  | ] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | The call function to the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | 
					
						
						|  | image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | 
					
						
						|  | `Image` or tensor representing an image batch to be used as the starting point. Can also accept image | 
					
						
						|  | latents as `image`, but if passing latents directly it is not encoded again. | 
					
						
						|  | strength (`float`, *optional*, defaults to 0.8): | 
					
						
						|  | Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | 
					
						
						|  | starting point and more noise is added the higher the `strength`. The number of denoising steps depends | 
					
						
						|  | on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | 
					
						
						|  | process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | 
					
						
						|  | essentially ignores `image`. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. This parameter is modulated by `strength`. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
						
						|  | `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide what to not include in image generation. If not defined, you need to | 
					
						
						|  | pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | 
					
						
						|  | to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | 
					
						
						|  | generation deterministic. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | 
					
						
						|  | provided, text embeddings are generated from the `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | 
					
						
						|  | not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generated image. Choose between `PIL.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that calls every `callback_steps` steps during inference. The function is called with the | 
					
						
						|  | following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function is called. If not specified, the callback is called at | 
					
						
						|  | every step. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | 
					
						
						|  | [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`, *optional*): | 
					
						
						|  | A mask with non-zero elements for the area to be inpainted. If not specified, no mask is applied. | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | 
					
						
						|  | otherwise a `tuple` is returned where the first element is a list with the generated images and the | 
					
						
						|  | second element is a list of `bool`s indicating whether the corresponding generated image contains | 
					
						
						|  | "not-safe-for-work" (nsfw) content. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_encoder_lora_scale = ( | 
					
						
						|  | cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = self._encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | lora_scale=text_encoder_lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.preprocess(image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  | timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | 
					
						
						|  | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_latents = [ | 
					
						
						|  | self.vae.encode(image.to(device=device, dtype=prompt_embeds.dtype)[i : i + 1]).latent_dist.mean | 
					
						
						|  | for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | init_latents = torch.cat(init_latents, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latent_mask = self._make_latent_mask(latents, mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | if latent_mask is not None: | 
					
						
						|  | latents = torch.lerp(init_latents * self.vae.config.scaling_factor, latents, latent_mask) | 
					
						
						|  | noise_pred = torch.lerp(torch.zeros_like(noise_pred), noise_pred, latent_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | step_idx = i // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, latents) | 
					
						
						|  |  | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  | scaled = latents / self.vae.config.scaling_factor | 
					
						
						|  | if latent_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | scaled = torch.lerp(init_latents, scaled, latent_mask) | 
					
						
						|  | image = self.vae.decode(scaled, return_dict=False)[0] | 
					
						
						|  | if self.debug_save: | 
					
						
						|  | image_gen = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  | image_gen = self.image_processor.postprocess(image_gen, output_type=output_type, do_denormalize=[True]) | 
					
						
						|  | image_gen[0].save("from_latent.png") | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
						
						|  | else: | 
					
						
						|  | image = latents | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  |  | 
					
						
						|  | if has_nsfw_concept is None: | 
					
						
						|  | do_denormalize = [True] * image.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
						
						|  | self.final_offload_hook.offload() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | def _make_latent_mask(self, latents, mask): | 
					
						
						|  | if mask is not None: | 
					
						
						|  | latent_mask = [] | 
					
						
						|  | if not isinstance(mask, list): | 
					
						
						|  | tmp_mask = [mask] | 
					
						
						|  | else: | 
					
						
						|  | tmp_mask = mask | 
					
						
						|  | _, l_channels, l_height, l_width = latents.shape | 
					
						
						|  | for m in tmp_mask: | 
					
						
						|  | if not isinstance(m, PIL.Image.Image): | 
					
						
						|  | if len(m.shape) == 2: | 
					
						
						|  | m = m[..., np.newaxis] | 
					
						
						|  | if m.max() > 1: | 
					
						
						|  | m = m / 255.0 | 
					
						
						|  | m = self.image_processor.numpy_to_pil(m)[0] | 
					
						
						|  | if m.mode != "L": | 
					
						
						|  | m = m.convert("L") | 
					
						
						|  | resized = self.image_processor.resize(m, l_height, l_width) | 
					
						
						|  | if self.debug_save: | 
					
						
						|  | resized.save("latent_mask.png") | 
					
						
						|  | latent_mask.append(np.repeat(np.array(resized)[np.newaxis, :, :], l_channels, axis=0)) | 
					
						
						|  | latent_mask = torch.as_tensor(np.stack(latent_mask)).to(latents) | 
					
						
						|  | latent_mask = latent_mask / latent_mask.max() | 
					
						
						|  | return latent_mask | 
					
						
						|  |  |