|  | import inspect | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers.image_processor import VaeImageProcessor | 
					
						
						|  | from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | from diffusers.models import AutoencoderKL, UNet2DConditionModel | 
					
						
						|  | from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
						
						|  | from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | 
					
						
						|  | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker | 
					
						
						|  | from diffusers.schedulers import LCMScheduler | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | USE_PEFT_BACKEND, | 
					
						
						|  | deprecate, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | scale_lora_layers, | 
					
						
						|  | unscale_lora_layers, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> import numpy as np | 
					
						
						|  |  | 
					
						
						|  | >>> from diffusers import DiffusionPipeline | 
					
						
						|  |  | 
					
						
						|  | >>> pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_interpolate") | 
					
						
						|  | >>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality. | 
					
						
						|  | >>> pipe.to(torch_device="cuda", torch_dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  | >>> prompts = ["A cat", "A dog", "A horse"] | 
					
						
						|  | >>> num_inference_steps = 4 | 
					
						
						|  | >>> num_interpolation_steps = 24 | 
					
						
						|  | >>> seed = 1337 | 
					
						
						|  |  | 
					
						
						|  | >>> torch.manual_seed(seed) | 
					
						
						|  | >>> np.random.seed(seed) | 
					
						
						|  |  | 
					
						
						|  | >>> images = pipe( | 
					
						
						|  | prompt=prompts, | 
					
						
						|  | height=512, | 
					
						
						|  | width=512, | 
					
						
						|  | num_inference_steps=num_inference_steps, | 
					
						
						|  | num_interpolation_steps=num_interpolation_steps, | 
					
						
						|  | guidance_scale=8.0, | 
					
						
						|  | embedding_interpolation_type="lerp", | 
					
						
						|  | latent_interpolation_type="slerp", | 
					
						
						|  | process_batch_size=4, # Make it higher or lower based on your GPU memory | 
					
						
						|  | generator=torch.Generator(seed), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | >>> # Save the images as a video | 
					
						
						|  | >>> import imageio | 
					
						
						|  | >>> from PIL import Image | 
					
						
						|  |  | 
					
						
						|  | >>> def pil_to_video(images: List[Image.Image], filename: str, fps: int = 60) -> None: | 
					
						
						|  | frames = [np.array(image) for image in images] | 
					
						
						|  | with imageio.get_writer(filename, fps=fps) as video_writer: | 
					
						
						|  | for frame in frames: | 
					
						
						|  | video_writer.append_data(frame) | 
					
						
						|  |  | 
					
						
						|  | >>> pil_to_video(images, "lcm_interpolate.mp4", fps=24) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def lerp( | 
					
						
						|  | v0: Union[torch.Tensor, np.ndarray], | 
					
						
						|  | v1: Union[torch.Tensor, np.ndarray], | 
					
						
						|  | t: Union[float, torch.Tensor, np.ndarray], | 
					
						
						|  | ) -> Union[torch.Tensor, np.ndarray]: | 
					
						
						|  | """ | 
					
						
						|  | Linearly interpolate between two vectors/tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | v0 (`torch.Tensor` or `np.ndarray`): First vector/tensor. | 
					
						
						|  | v1 (`torch.Tensor` or `np.ndarray`): Second vector/tensor. | 
					
						
						|  | t: (`float`, `torch.Tensor`, or `np.ndarray`): | 
					
						
						|  | Interpolation factor. If float, must be between 0 and 1. If np.ndarray or | 
					
						
						|  | torch.Tensor, must be one dimensional with values between 0 and 1. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | Union[torch.Tensor, np.ndarray] | 
					
						
						|  | Interpolated vector/tensor between v0 and v1. | 
					
						
						|  | """ | 
					
						
						|  | inputs_are_torch = False | 
					
						
						|  | t_is_float = False | 
					
						
						|  |  | 
					
						
						|  | if isinstance(v0, torch.Tensor): | 
					
						
						|  | inputs_are_torch = True | 
					
						
						|  | input_device = v0.device | 
					
						
						|  | v0 = v0.cpu().numpy() | 
					
						
						|  | v1 = v1.cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(t, torch.Tensor): | 
					
						
						|  | inputs_are_torch = True | 
					
						
						|  | input_device = t.device | 
					
						
						|  | t = t.cpu().numpy() | 
					
						
						|  | elif isinstance(t, float): | 
					
						
						|  | t_is_float = True | 
					
						
						|  | t = np.array([t]) | 
					
						
						|  |  | 
					
						
						|  | t = t[..., None] | 
					
						
						|  | v0 = v0[None, ...] | 
					
						
						|  | v1 = v1[None, ...] | 
					
						
						|  | v2 = (1 - t) * v0 + t * v1 | 
					
						
						|  |  | 
					
						
						|  | if t_is_float and v0.ndim > 1: | 
					
						
						|  | assert v2.shape[0] == 1 | 
					
						
						|  | v2 = np.squeeze(v2, axis=0) | 
					
						
						|  | if inputs_are_torch: | 
					
						
						|  | v2 = torch.from_numpy(v2).to(input_device) | 
					
						
						|  |  | 
					
						
						|  | return v2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def slerp( | 
					
						
						|  | v0: Union[torch.Tensor, np.ndarray], | 
					
						
						|  | v1: Union[torch.Tensor, np.ndarray], | 
					
						
						|  | t: Union[float, torch.Tensor, np.ndarray], | 
					
						
						|  | DOT_THRESHOLD=0.9995, | 
					
						
						|  | ) -> Union[torch.Tensor, np.ndarray]: | 
					
						
						|  | """ | 
					
						
						|  | Spherical linear interpolation between two vectors/tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | v0 (`torch.Tensor` or `np.ndarray`): First vector/tensor. | 
					
						
						|  | v1 (`torch.Tensor` or `np.ndarray`): Second vector/tensor. | 
					
						
						|  | t: (`float`, `torch.Tensor`, or `np.ndarray`): | 
					
						
						|  | Interpolation factor. If float, must be between 0 and 1. If np.ndarray or | 
					
						
						|  | torch.Tensor, must be one dimensional with values between 0 and 1. | 
					
						
						|  | DOT_THRESHOLD (`float`, *optional*, default=0.9995): | 
					
						
						|  | Threshold for when to use linear interpolation instead of spherical interpolation. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor` or `np.ndarray`: | 
					
						
						|  | Interpolated vector/tensor between v0 and v1. | 
					
						
						|  | """ | 
					
						
						|  | inputs_are_torch = False | 
					
						
						|  | t_is_float = False | 
					
						
						|  |  | 
					
						
						|  | if isinstance(v0, torch.Tensor): | 
					
						
						|  | inputs_are_torch = True | 
					
						
						|  | input_device = v0.device | 
					
						
						|  | v0 = v0.cpu().numpy() | 
					
						
						|  | v1 = v1.cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(t, torch.Tensor): | 
					
						
						|  | inputs_are_torch = True | 
					
						
						|  | input_device = t.device | 
					
						
						|  | t = t.cpu().numpy() | 
					
						
						|  | elif isinstance(t, float): | 
					
						
						|  | t_is_float = True | 
					
						
						|  | t = np.array([t], dtype=v0.dtype) | 
					
						
						|  |  | 
					
						
						|  | dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) | 
					
						
						|  | if np.abs(dot) > DOT_THRESHOLD: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | v2 = lerp(v0, v1, t) | 
					
						
						|  | else: | 
					
						
						|  | theta_0 = np.arccos(dot) | 
					
						
						|  | sin_theta_0 = np.sin(theta_0) | 
					
						
						|  | theta_t = theta_0 * t | 
					
						
						|  | sin_theta_t = np.sin(theta_t) | 
					
						
						|  | s0 = np.sin(theta_0 - theta_t) / sin_theta_0 | 
					
						
						|  | s1 = sin_theta_t / sin_theta_0 | 
					
						
						|  | s0 = s0[..., None] | 
					
						
						|  | s1 = s1[..., None] | 
					
						
						|  | v0 = v0[None, ...] | 
					
						
						|  | v1 = v1[None, ...] | 
					
						
						|  | v2 = s0 * v0 + s1 * v1 | 
					
						
						|  |  | 
					
						
						|  | if t_is_float and v0.ndim > 1: | 
					
						
						|  | assert v2.shape[0] == 1 | 
					
						
						|  | v2 = np.squeeze(v2, axis=0) | 
					
						
						|  | if inputs_are_torch: | 
					
						
						|  | v2 = torch.from_numpy(v2).to(input_device) | 
					
						
						|  |  | 
					
						
						|  | return v2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LatentConsistencyModelWalkPipeline( | 
					
						
						|  | DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using a latent consistency model. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | 
					
						
						|  | implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 
					
						
						|  |  | 
					
						
						|  | The pipeline also inherits the following loading methods: | 
					
						
						|  | - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | 
					
						
						|  | - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | 
					
						
						|  | - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | 
					
						
						|  | - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`~transformers.CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | 
					
						
						|  | tokenizer ([`~transformers.CLIPTokenizer`]): | 
					
						
						|  | A `CLIPTokenizer` to tokenize text. | 
					
						
						|  | unet ([`UNet2DConditionModel`]): | 
					
						
						|  | A `UNet2DConditionModel` to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only | 
					
						
						|  | supports [`LCMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | 
					
						
						|  | about a model's potential harms. | 
					
						
						|  | feature_extractor ([`~transformers.CLIPImageProcessor`]): | 
					
						
						|  | A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | 
					
						
						|  | requires_safety_checker (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the pipeline requires a safety checker component. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->unet->vae" | 
					
						
						|  | _optional_components = ["safety_checker", "feature_extractor"] | 
					
						
						|  | _exclude_from_cpu_offload = ["safety_checker"] | 
					
						
						|  | _callback_tensor_inputs = ["latents", "denoised", "prompt_embeds", "w_embedding"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: LCMScheduler, | 
					
						
						|  | safety_checker: StableDiffusionSafetyChecker, | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | requires_safety_checker: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is None and requires_safety_checker: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | 
					
						
						|  | " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | 
					
						
						|  | " results in services or applications open to the public. Both the diffusers team and Hugging Face" | 
					
						
						|  | " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | 
					
						
						|  | " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | 
					
						
						|  | " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is not None and feature_extractor is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | 
					
						
						|  | " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  | self.register_to_config(requires_safety_checker=requires_safety_checker) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, LoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | scale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | if clip_skip is None: | 
					
						
						|  | prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | prompt_embeds_dtype = self.text_encoder.dtype | 
					
						
						|  | elif self.unet is not None: | 
					
						
						|  | prompt_embeds_dtype = self.unet.dtype | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds_dtype = prompt_embeds.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def run_safety_checker(self, image, device, dtype): | 
					
						
						|  | if self.safety_checker is None: | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | else: | 
					
						
						|  | if torch.is_tensor(image): | 
					
						
						|  | feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | 
					
						
						|  | else: | 
					
						
						|  | feature_extractor_input = self.image_processor.numpy_to_pil(image) | 
					
						
						|  | safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | 
					
						
						|  | image, has_nsfw_concept = self.safety_checker( | 
					
						
						|  | images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
						
						|  | ) | 
					
						
						|  | return image, has_nsfw_concept | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
						
						|  | shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | 
					
						
						|  | """ | 
					
						
						|  | See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | timesteps (`torch.Tensor`): | 
					
						
						|  | generate embedding vectors at these timesteps | 
					
						
						|  | embedding_dim (`int`, *optional*, defaults to 512): | 
					
						
						|  | dimension of the embeddings to generate | 
					
						
						|  | dtype: | 
					
						
						|  | data type of the generated embeddings | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | 
					
						
						|  | """ | 
					
						
						|  | assert len(w.shape) == 1 | 
					
						
						|  | w = w * 1000.0 | 
					
						
						|  |  | 
					
						
						|  | half_dim = embedding_dim // 2 | 
					
						
						|  | emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | 
					
						
						|  | emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | 
					
						
						|  | emb = w.to(dtype)[:, None] * emb[None, :] | 
					
						
						|  | emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | 
					
						
						|  | if embedding_dim % 2 == 1: | 
					
						
						|  | emb = torch.nn.functional.pad(emb, (0, 1)) | 
					
						
						|  | assert emb.shape == (w.shape[0], embedding_dim) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | height: int, | 
					
						
						|  | width: int, | 
					
						
						|  | callback_steps: int, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | callback_on_step_end_tensor_inputs=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end_tensor_inputs is not None and not all( | 
					
						
						|  | k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def interpolate_embedding( | 
					
						
						|  | self, | 
					
						
						|  | start_embedding: torch.FloatTensor, | 
					
						
						|  | end_embedding: torch.FloatTensor, | 
					
						
						|  | num_interpolation_steps: Union[int, List[int]], | 
					
						
						|  | interpolation_type: str, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | if interpolation_type == "lerp": | 
					
						
						|  | interpolation_fn = lerp | 
					
						
						|  | elif interpolation_type == "slerp": | 
					
						
						|  | interpolation_fn = slerp | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"embedding_interpolation_type must be one of ['lerp', 'slerp'], got {interpolation_type}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | embedding = torch.cat([start_embedding, end_embedding]) | 
					
						
						|  | steps = torch.linspace(0, 1, num_interpolation_steps, dtype=embedding.dtype).cpu().numpy() | 
					
						
						|  | steps = np.expand_dims(steps, axis=tuple(range(1, embedding.ndim))) | 
					
						
						|  | interpolations = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(embedding.shape[0] - 1): | 
					
						
						|  | interpolations.append(interpolation_fn(embedding[i], embedding[i + 1], steps).squeeze(dim=1)) | 
					
						
						|  |  | 
					
						
						|  | interpolations = torch.cat(interpolations) | 
					
						
						|  | return interpolations | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def interpolate_latent( | 
					
						
						|  | self, | 
					
						
						|  | start_latent: torch.FloatTensor, | 
					
						
						|  | end_latent: torch.FloatTensor, | 
					
						
						|  | num_interpolation_steps: Union[int, List[int]], | 
					
						
						|  | interpolation_type: str, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | if interpolation_type == "lerp": | 
					
						
						|  | interpolation_fn = lerp | 
					
						
						|  | elif interpolation_type == "slerp": | 
					
						
						|  | interpolation_fn = slerp | 
					
						
						|  |  | 
					
						
						|  | latent = torch.cat([start_latent, end_latent]) | 
					
						
						|  | steps = torch.linspace(0, 1, num_interpolation_steps, dtype=latent.dtype).cpu().numpy() | 
					
						
						|  | steps = np.expand_dims(steps, axis=tuple(range(1, latent.ndim))) | 
					
						
						|  | interpolations = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(latent.shape[0] - 1): | 
					
						
						|  | interpolations.append(interpolation_fn(latent[i], latent[i + 1], steps).squeeze(dim=1)) | 
					
						
						|  |  | 
					
						
						|  | return torch.cat(interpolations) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def guidance_scale(self): | 
					
						
						|  | return self._guidance_scale | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def cross_attention_kwargs(self): | 
					
						
						|  | return self._cross_attention_kwargs | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def clip_skip(self): | 
					
						
						|  | return self._clip_skip | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_timesteps(self): | 
					
						
						|  | return self._num_timesteps | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 4, | 
					
						
						|  | num_interpolation_steps: int = 8, | 
					
						
						|  | original_inference_steps: int = None, | 
					
						
						|  | guidance_scale: float = 8.5, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | 
					
						
						|  | callback_on_step_end_tensor_inputs: List[str] = ["latents"], | 
					
						
						|  | embedding_interpolation_type: str = "lerp", | 
					
						
						|  | latent_interpolation_type: str = "slerp", | 
					
						
						|  | process_batch_size: int = 4, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | The call function to the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | 
					
						
						|  | height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | original_inference_steps (`int`, *optional*): | 
					
						
						|  | The original number of inference steps use to generate a linearly-spaced timestep schedule, from which | 
					
						
						|  | we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule, | 
					
						
						|  | following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the | 
					
						
						|  | scheduler's `original_inference_steps` attribute. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
						
						|  | `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
						
						|  | Note that the original latent consistency models paper uses a different CFG formulation where the | 
					
						
						|  | guidance scales are decreased by 1 (so in the paper formulation CFG is enabled when `guidance_scale > | 
					
						
						|  | 0`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | 
					
						
						|  | generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor is generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | 
					
						
						|  | provided, text embeddings are generated from the `prompt` input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generated image. Choose between `PIL.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | 
					
						
						|  | [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | callback_on_step_end (`Callable`, *optional*): | 
					
						
						|  | A function that calls at the end of each denoising steps during the inference. The function is called | 
					
						
						|  | with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | 
					
						
						|  | callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | 
					
						
						|  | `callback_on_step_end_tensor_inputs`. | 
					
						
						|  | callback_on_step_end_tensor_inputs (`List`, *optional*): | 
					
						
						|  | The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | 
					
						
						|  | will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | 
					
						
						|  | `._callback_tensor_inputs` attribute of your pipeine class. | 
					
						
						|  | embedding_interpolation_type (`str`, *optional*, defaults to `"lerp"`): | 
					
						
						|  | The type of interpolation to use for interpolating between text embeddings. Choose between `"lerp"` and `"slerp"`. | 
					
						
						|  | latent_interpolation_type (`str`, *optional*, defaults to `"slerp"`): | 
					
						
						|  | The type of interpolation to use for interpolating between latents. Choose between `"lerp"` and `"slerp"`. | 
					
						
						|  | process_batch_size (`int`, *optional*, defaults to 4): | 
					
						
						|  | The batch size to use for processing the images. This is useful when generating a large number of images | 
					
						
						|  | and you want to avoid running out of memory. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | 
					
						
						|  | otherwise a `tuple` is returned where the first element is a list with the generated images and the | 
					
						
						|  | second element is a list of `bool`s indicating whether the corresponding generated image contains | 
					
						
						|  | "not-safe-for-work" (nsfw) content. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | callback = kwargs.pop("callback", None) | 
					
						
						|  | callback_steps = kwargs.pop("callback_steps", None) | 
					
						
						|  |  | 
					
						
						|  | if callback is not None: | 
					
						
						|  | deprecate( | 
					
						
						|  | "callback", | 
					
						
						|  | "1.0.0", | 
					
						
						|  | "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | 
					
						
						|  | ) | 
					
						
						|  | if callback_steps is not None: | 
					
						
						|  | deprecate( | 
					
						
						|  | "callback_steps", | 
					
						
						|  | "1.0.0", | 
					
						
						|  | "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs(prompt, height, width, callback_steps, prompt_embeds, callback_on_step_end_tensor_inputs) | 
					
						
						|  | self._guidance_scale = guidance_scale | 
					
						
						|  | self._clip_skip = clip_skip | 
					
						
						|  | self._cross_attention_kwargs = cross_attention_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  | if batch_size < 2: | 
					
						
						|  | raise ValueError(f"`prompt` must have length of atleast 2 but found {batch_size}") | 
					
						
						|  | if num_images_per_prompt != 1: | 
					
						
						|  | raise ValueError("`num_images_per_prompt` must be `1` as no other value is supported yet") | 
					
						
						|  | if prompt_embeds is not None: | 
					
						
						|  | raise ValueError("`prompt_embeds` must be None since it is not supported yet") | 
					
						
						|  | if latents is not None: | 
					
						
						|  | raise ValueError("`latents` must be None since it is not supported yet") | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lora_scale = ( | 
					
						
						|  | self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device, original_inference_steps=original_inference_steps) | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_1, _ = self.encode_prompt( | 
					
						
						|  | prompt[:1], | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance=False, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | clip_skip=self.clip_skip, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents_1 = self.prepare_latents( | 
					
						
						|  | 1, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds_1.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None) | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | self._num_timesteps = len(timesteps) | 
					
						
						|  | images = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=batch_size - 1) as prompt_progress_bar: | 
					
						
						|  | for i in range(1, batch_size): | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_2, _ = self.encode_prompt( | 
					
						
						|  | prompt[i : i + 1], | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance=False, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | clip_skip=self.clip_skip, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents_2 = self.prepare_latents( | 
					
						
						|  | 1, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds_2.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_embeddings = self.interpolate_embedding( | 
					
						
						|  | start_embedding=prompt_embeds_1, | 
					
						
						|  | end_embedding=prompt_embeds_2, | 
					
						
						|  | num_interpolation_steps=num_interpolation_steps, | 
					
						
						|  | interpolation_type=embedding_interpolation_type, | 
					
						
						|  | ) | 
					
						
						|  | inference_latents = self.interpolate_latent( | 
					
						
						|  | start_latent=latents_1, | 
					
						
						|  | end_latent=latents_2, | 
					
						
						|  | num_interpolation_steps=num_interpolation_steps, | 
					
						
						|  | interpolation_type=latent_interpolation_type, | 
					
						
						|  | ) | 
					
						
						|  | next_prompt_embeds = inference_embeddings[-1:].detach().clone() | 
					
						
						|  | next_latents = inference_latents[-1:].detach().clone() | 
					
						
						|  | bs = num_interpolation_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar( | 
					
						
						|  | total=(bs + process_batch_size - 1) // process_batch_size | 
					
						
						|  | ) as batch_progress_bar: | 
					
						
						|  | for batch_index in range(0, bs, process_batch_size): | 
					
						
						|  | batch_inference_latents = inference_latents[batch_index : batch_index + process_batch_size] | 
					
						
						|  | batch_inference_embedddings = inference_embeddings[ | 
					
						
						|  | batch_index : batch_index + process_batch_size | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps( | 
					
						
						|  | num_inference_steps, device, original_inference_steps=original_inference_steps | 
					
						
						|  | ) | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  | current_bs = batch_inference_embedddings.shape[0] | 
					
						
						|  | w = torch.tensor(self.guidance_scale - 1).repeat(current_bs) | 
					
						
						|  | w_embedding = self.get_guidance_scale_embedding( | 
					
						
						|  | w, embedding_dim=self.unet.config.time_cond_proj_dim | 
					
						
						|  | ).to(device=device, dtype=latents_1.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for index, t in enumerate(timesteps): | 
					
						
						|  | batch_inference_latents = batch_inference_latents.to(batch_inference_embedddings.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_pred = self.unet( | 
					
						
						|  | batch_inference_latents, | 
					
						
						|  | t, | 
					
						
						|  | timestep_cond=w_embedding, | 
					
						
						|  | encoder_hidden_states=batch_inference_embedddings, | 
					
						
						|  | cross_attention_kwargs=self.cross_attention_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_inference_latents, denoised = self.scheduler.step( | 
					
						
						|  | model_pred, t, batch_inference_latents, **extra_step_kwargs, return_dict=False | 
					
						
						|  | ) | 
					
						
						|  | if callback_on_step_end is not None: | 
					
						
						|  | callback_kwargs = {} | 
					
						
						|  | for k in callback_on_step_end_tensor_inputs: | 
					
						
						|  | callback_kwargs[k] = locals()[k] | 
					
						
						|  | callback_outputs = callback_on_step_end(self, index, t, callback_kwargs) | 
					
						
						|  |  | 
					
						
						|  | batch_inference_latents = callback_outputs.pop("latents", batch_inference_latents) | 
					
						
						|  | batch_inference_embedddings = callback_outputs.pop( | 
					
						
						|  | "prompt_embeds", batch_inference_embedddings | 
					
						
						|  | ) | 
					
						
						|  | w_embedding = callback_outputs.pop("w_embedding", w_embedding) | 
					
						
						|  | denoised = callback_outputs.pop("denoised", denoised) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if index == len(timesteps) - 1 or ( | 
					
						
						|  | (index + 1) > num_warmup_steps and (index + 1) % self.scheduler.order == 0 | 
					
						
						|  | ): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and index % callback_steps == 0: | 
					
						
						|  | step_idx = index // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, batch_inference_latents) | 
					
						
						|  |  | 
					
						
						|  | denoised = denoised.to(batch_inference_embedddings.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  | do_denormalize = [True] * image.shape[0] | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess( | 
					
						
						|  | image, output_type=output_type, do_denormalize=do_denormalize | 
					
						
						|  | ) | 
					
						
						|  | images.append(image) | 
					
						
						|  |  | 
					
						
						|  | batch_progress_bar.update() | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_1 = next_prompt_embeds | 
					
						
						|  | latents_1 = next_latents | 
					
						
						|  |  | 
					
						
						|  | prompt_progress_bar.update() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_type == "pil": | 
					
						
						|  | images = [image for image_list in images for image in image_list] | 
					
						
						|  | elif output_type == "np": | 
					
						
						|  | images = np.concatenate(images) | 
					
						
						|  | elif output_type == "pt": | 
					
						
						|  | images = torch.cat(images) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("`output_type` must be one of 'pil', 'np' or 'pt'.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (images, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  |