|  | from typing import Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from einops import rearrange, reduce | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNet2DConditionModel | 
					
						
						|  | from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput | 
					
						
						|  | from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BITS = 8 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decimal_to_bits(x, bits=BITS): | 
					
						
						|  | """expects image tensor ranging from 0 to 1, outputs bit tensor ranging from -1 to 1""" | 
					
						
						|  | device = x.device | 
					
						
						|  |  | 
					
						
						|  | x = (x * 255).int().clamp(0, 255) | 
					
						
						|  |  | 
					
						
						|  | mask = 2 ** torch.arange(bits - 1, -1, -1, device=device) | 
					
						
						|  | mask = rearrange(mask, "d -> d 1 1") | 
					
						
						|  | x = rearrange(x, "b c h w -> b c 1 h w") | 
					
						
						|  |  | 
					
						
						|  | bits = ((x & mask) != 0).float() | 
					
						
						|  | bits = rearrange(bits, "b c d h w -> b (c d) h w") | 
					
						
						|  | bits = bits * 2 - 1 | 
					
						
						|  | return bits | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def bits_to_decimal(x, bits=BITS): | 
					
						
						|  | """expects bits from -1 to 1, outputs image tensor from 0 to 1""" | 
					
						
						|  | device = x.device | 
					
						
						|  |  | 
					
						
						|  | x = (x > 0).int() | 
					
						
						|  | mask = 2 ** torch.arange(bits - 1, -1, -1, device=device, dtype=torch.int32) | 
					
						
						|  |  | 
					
						
						|  | mask = rearrange(mask, "d -> d 1 1") | 
					
						
						|  | x = rearrange(x, "b (c d) h w -> b c d h w", d=8) | 
					
						
						|  | dec = reduce(x * mask, "b c d h w -> b c h w", "sum") | 
					
						
						|  | return (dec / 255).clamp(0.0, 1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def ddim_bit_scheduler_step( | 
					
						
						|  | self, | 
					
						
						|  | model_output: torch.FloatTensor, | 
					
						
						|  | timestep: int, | 
					
						
						|  | sample: torch.FloatTensor, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | use_clipped_model_output: bool = True, | 
					
						
						|  | generator=None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[DDIMSchedulerOutput, Tuple]: | 
					
						
						|  | """ | 
					
						
						|  | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | 
					
						
						|  | process from the learned model outputs (most often the predicted noise). | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | 
					
						
						|  | timestep (`int`): current discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`torch.FloatTensor`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  | eta (`float`): weight of noise for added noise in diffusion step. | 
					
						
						|  | use_clipped_model_output (`bool`): TODO | 
					
						
						|  | generator: random number generator. | 
					
						
						|  | return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class | 
					
						
						|  | Returns: | 
					
						
						|  | [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: | 
					
						
						|  | [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | 
					
						
						|  | returning a tuple, the first element is the sample tensor. | 
					
						
						|  | """ | 
					
						
						|  | if self.num_inference_steps is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alpha_prod_t = self.alphas_cumprod[timestep] | 
					
						
						|  | alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | 
					
						
						|  |  | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scale = self.bit_scale | 
					
						
						|  | if self.config.clip_sample: | 
					
						
						|  | pred_original_sample = torch.clamp(pred_original_sample, -scale, scale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | variance = self._get_variance(timestep, prev_timestep) | 
					
						
						|  | std_dev_t = eta * variance ** (0.5) | 
					
						
						|  |  | 
					
						
						|  | if use_clipped_model_output: | 
					
						
						|  |  | 
					
						
						|  | model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | 
					
						
						|  |  | 
					
						
						|  | if eta > 0: | 
					
						
						|  |  | 
					
						
						|  | device = model_output.device if torch.is_tensor(model_output) else "cpu" | 
					
						
						|  | noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device) | 
					
						
						|  | variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise | 
					
						
						|  |  | 
					
						
						|  | prev_sample = prev_sample + variance | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (prev_sample,) | 
					
						
						|  |  | 
					
						
						|  | return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def ddpm_bit_scheduler_step( | 
					
						
						|  | self, | 
					
						
						|  | model_output: torch.FloatTensor, | 
					
						
						|  | timestep: int, | 
					
						
						|  | sample: torch.FloatTensor, | 
					
						
						|  | prediction_type="epsilon", | 
					
						
						|  | generator=None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[DDPMSchedulerOutput, Tuple]: | 
					
						
						|  | """ | 
					
						
						|  | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | 
					
						
						|  | process from the learned model outputs (most often the predicted noise). | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | 
					
						
						|  | timestep (`int`): current discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`torch.FloatTensor`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  | prediction_type (`str`, default `epsilon`): | 
					
						
						|  | indicates whether the model predicts the noise (epsilon), or the samples (`sample`). | 
					
						
						|  | generator: random number generator. | 
					
						
						|  | return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class | 
					
						
						|  | Returns: | 
					
						
						|  | [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`: | 
					
						
						|  | [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | 
					
						
						|  | returning a tuple, the first element is the sample tensor. | 
					
						
						|  | """ | 
					
						
						|  | t = timestep | 
					
						
						|  |  | 
					
						
						|  | if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: | 
					
						
						|  | model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | predicted_variance = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alpha_prod_t = self.alphas_cumprod[t] | 
					
						
						|  | alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  | beta_prod_t_prev = 1 - alpha_prod_t_prev | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prediction_type == "epsilon": | 
					
						
						|  | pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | 
					
						
						|  | elif prediction_type == "sample": | 
					
						
						|  | pred_original_sample = model_output | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported prediction_type {prediction_type}.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scale = self.bit_scale | 
					
						
						|  | if self.config.clip_sample: | 
					
						
						|  | pred_original_sample = torch.clamp(pred_original_sample, -scale, scale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t | 
					
						
						|  | current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | variance = 0 | 
					
						
						|  | if t > 0: | 
					
						
						|  | noise = torch.randn( | 
					
						
						|  | model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator | 
					
						
						|  | ).to(model_output.device) | 
					
						
						|  | variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise | 
					
						
						|  |  | 
					
						
						|  | pred_prev_sample = pred_prev_sample + variance | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (pred_prev_sample,) | 
					
						
						|  |  | 
					
						
						|  | return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BitDiffusion(DiffusionPipeline): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: Union[DDIMScheduler, DDPMScheduler], | 
					
						
						|  | bit_scale: Optional[float] = 1.0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.bit_scale = bit_scale | 
					
						
						|  | self.scheduler.step = ( | 
					
						
						|  | ddim_bit_scheduler_step if isinstance(scheduler, DDIMScheduler) else ddpm_bit_scheduler_step | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules(unet=unet, scheduler=scheduler) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | height: Optional[int] = 256, | 
					
						
						|  | width: Optional[int] = 256, | 
					
						
						|  | num_inference_steps: Optional[int] = 50, | 
					
						
						|  | generator: Optional[torch.Generator] = None, | 
					
						
						|  | batch_size: Optional[int] = 1, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[Tuple, ImagePipelineOutput]: | 
					
						
						|  | latents = torch.randn( | 
					
						
						|  | (batch_size, self.unet.config.in_channels, height, width), | 
					
						
						|  | generator=generator, | 
					
						
						|  | ) | 
					
						
						|  | latents = decimal_to_bits(latents) * self.bit_scale | 
					
						
						|  | latents = latents.to(self.device) | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | for t in self.progress_bar(self.scheduler.timesteps): | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet(latents, t).sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents).prev_sample | 
					
						
						|  |  | 
					
						
						|  | image = bits_to_decimal(latents) | 
					
						
						|  |  | 
					
						
						|  | if output_type == "pil": | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image,) | 
					
						
						|  |  | 
					
						
						|  | return ImagePipelineOutput(images=image) | 
					
						
						|  |  |