|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | from diffusers.configuration_utils import ConfigMixin | 
					
						
						|  | from diffusers.pipeline_utils import ImagePipelineOutput | 
					
						
						|  | from diffusers.schedulers.scheduling_utils import SchedulerMixin | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class IADBScheduler(SchedulerMixin, ConfigMixin): | 
					
						
						|  | """ | 
					
						
						|  | IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist. | 
					
						
						|  |  | 
					
						
						|  | For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def step( | 
					
						
						|  | self, | 
					
						
						|  | model_output: torch.FloatTensor, | 
					
						
						|  | timestep: int, | 
					
						
						|  | x_alpha: torch.FloatTensor, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | """ | 
					
						
						|  | Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion | 
					
						
						|  | process from the learned model outputs (most often the predicted noise). | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`torch.FloatTensor`): direct output from learned diffusion model. It is the direction from x0 to x1. | 
					
						
						|  | timestep (`float`): current timestep in the diffusion chain. | 
					
						
						|  | x_alpha (`torch.FloatTensor`): x_alpha sample for the current timestep | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.FloatTensor`: the sample at the previous timestep | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | if self.num_inference_steps is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | alpha = timestep / self.num_inference_steps | 
					
						
						|  | alpha_next = (timestep + 1) / self.num_inference_steps | 
					
						
						|  |  | 
					
						
						|  | d = model_output | 
					
						
						|  |  | 
					
						
						|  | x_alpha = x_alpha + (alpha_next - alpha) * d | 
					
						
						|  |  | 
					
						
						|  | return x_alpha | 
					
						
						|  |  | 
					
						
						|  | def set_timesteps(self, num_inference_steps: int): | 
					
						
						|  | self.num_inference_steps = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  | def add_noise( | 
					
						
						|  | self, | 
					
						
						|  | original_samples: torch.FloatTensor, | 
					
						
						|  | noise: torch.FloatTensor, | 
					
						
						|  | alpha: torch.FloatTensor, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | return original_samples * alpha + noise * (1 - alpha) | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return self.config.num_train_timesteps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class IADBPipeline(DiffusionPipeline): | 
					
						
						|  | r""" | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of | 
					
						
						|  | [`DDPMScheduler`], or [`DDIMScheduler`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, unet, scheduler): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules(unet=unet, scheduler=scheduler) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | batch_size: int = 1, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[ImagePipelineOutput, Tuple]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | batch_size (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is | 
					
						
						|  | True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.unet.config.sample_size, int): | 
					
						
						|  | image_shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | self.unet.config.in_channels, | 
					
						
						|  | self.unet.config.sample_size, | 
					
						
						|  | self.unet.config.sample_size, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | x_alpha = image.clone() | 
					
						
						|  | for t in self.progress_bar(range(num_inference_steps)): | 
					
						
						|  | alpha = t / num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x_alpha = self.scheduler.step(model_output, t, x_alpha) | 
					
						
						|  |  | 
					
						
						|  | image = (x_alpha * 0.5 + 0.5).clamp(0, 1) | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).numpy() | 
					
						
						|  | if output_type == "pil": | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image,) | 
					
						
						|  |  | 
					
						
						|  | return ImagePipelineOutput(images=image) | 
					
						
						|  |  |