|  | import inspect | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import PIL | 
					
						
						|  | import torch | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  | from transformers import ( | 
					
						
						|  | CLIPImageProcessor, | 
					
						
						|  | CLIPTextModelWithProjection, | 
					
						
						|  | CLIPTokenizer, | 
					
						
						|  | CLIPVisionModelWithProjection, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | from diffusers import ( | 
					
						
						|  | DiffusionPipeline, | 
					
						
						|  | ImagePipelineOutput, | 
					
						
						|  | UnCLIPScheduler, | 
					
						
						|  | UNet2DConditionModel, | 
					
						
						|  | UNet2DModel, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.pipelines.unclip import UnCLIPTextProjModel | 
					
						
						|  | from diffusers.utils import is_accelerate_available, logging, randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def slerp(val, low, high): | 
					
						
						|  | """ | 
					
						
						|  | Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic. | 
					
						
						|  | """ | 
					
						
						|  | low_norm = low / torch.norm(low) | 
					
						
						|  | high_norm = high / torch.norm(high) | 
					
						
						|  | omega = torch.acos((low_norm * high_norm)) | 
					
						
						|  | so = torch.sin(omega) | 
					
						
						|  | res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high | 
					
						
						|  | return res | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UnCLIPImageInterpolationPipeline(DiffusionPipeline): | 
					
						
						|  | """ | 
					
						
						|  | Pipeline to generate variations from an input image using unCLIP | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | text_encoder ([`CLIPTextModelWithProjection`]): | 
					
						
						|  | Frozen text-encoder. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | feature_extractor ([`CLIPImageProcessor`]): | 
					
						
						|  | Model that extracts features from generated images to be used as inputs for the `image_encoder`. | 
					
						
						|  | image_encoder ([`CLIPVisionModelWithProjection`]): | 
					
						
						|  | Frozen CLIP image-encoder. unCLIP Image Variation uses the vision portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), | 
					
						
						|  | specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | text_proj ([`UnCLIPTextProjModel`]): | 
					
						
						|  | Utility class to prepare and combine the embeddings before they are passed to the decoder. | 
					
						
						|  | decoder ([`UNet2DConditionModel`]): | 
					
						
						|  | The decoder to invert the image embedding into an image. | 
					
						
						|  | super_res_first ([`UNet2DModel`]): | 
					
						
						|  | Super resolution unet. Used in all but the last step of the super resolution diffusion process. | 
					
						
						|  | super_res_last ([`UNet2DModel`]): | 
					
						
						|  | Super resolution unet. Used in the last step of the super resolution diffusion process. | 
					
						
						|  | decoder_scheduler ([`UnCLIPScheduler`]): | 
					
						
						|  | Scheduler used in the decoder denoising process. Just a modified DDPMScheduler. | 
					
						
						|  | super_res_scheduler ([`UnCLIPScheduler`]): | 
					
						
						|  | Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | decoder: UNet2DConditionModel | 
					
						
						|  | text_proj: UnCLIPTextProjModel | 
					
						
						|  | text_encoder: CLIPTextModelWithProjection | 
					
						
						|  | tokenizer: CLIPTokenizer | 
					
						
						|  | feature_extractor: CLIPImageProcessor | 
					
						
						|  | image_encoder: CLIPVisionModelWithProjection | 
					
						
						|  | super_res_first: UNet2DModel | 
					
						
						|  | super_res_last: UNet2DModel | 
					
						
						|  |  | 
					
						
						|  | decoder_scheduler: UnCLIPScheduler | 
					
						
						|  | super_res_scheduler: UnCLIPScheduler | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | decoder: UNet2DConditionModel, | 
					
						
						|  | text_encoder: CLIPTextModelWithProjection, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | text_proj: UnCLIPTextProjModel, | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | image_encoder: CLIPVisionModelWithProjection, | 
					
						
						|  | super_res_first: UNet2DModel, | 
					
						
						|  | super_res_last: UNet2DModel, | 
					
						
						|  | decoder_scheduler: UnCLIPScheduler, | 
					
						
						|  | super_res_scheduler: UnCLIPScheduler, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | decoder=decoder, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | text_proj=text_proj, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | image_encoder=image_encoder, | 
					
						
						|  | super_res_first=super_res_first, | 
					
						
						|  | super_res_last=super_res_last, | 
					
						
						|  | decoder_scheduler=decoder_scheduler, | 
					
						
						|  | super_res_scheduler=super_res_scheduler, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | if latents.shape != shape: | 
					
						
						|  | raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  | latents = latents * scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): | 
					
						
						|  | batch_size = len(prompt) if isinstance(prompt, list) else 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | text_mask = text_inputs.attention_mask.bool().to(device) | 
					
						
						|  | text_encoder_output = self.text_encoder(text_input_ids.to(device)) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = text_encoder_output.text_embeds | 
					
						
						|  | text_encoder_hidden_states = text_encoder_output.last_hidden_state | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  |  | 
					
						
						|  | max_length = text_input_ids.shape[-1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | uncond_text_mask = uncond_input.attention_mask.bool().to(device) | 
					
						
						|  | negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds | 
					
						
						|  | uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) | 
					
						
						|  |  | 
					
						
						|  | seq_len = uncond_text_encoder_hidden_states.shape[1] | 
					
						
						|  | uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | 
					
						
						|  | batch_size * num_images_per_prompt, seq_len, -1 | 
					
						
						|  | ) | 
					
						
						|  | uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  | text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | 
					
						
						|  |  | 
					
						
						|  | text_mask = torch.cat([uncond_text_mask, text_mask]) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, text_encoder_hidden_states, text_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _encode_image(self, image, device, num_images_per_prompt, image_embeddings: Optional[torch.Tensor] = None): | 
					
						
						|  | dtype = next(self.image_encoder.parameters()).dtype | 
					
						
						|  |  | 
					
						
						|  | if image_embeddings is None: | 
					
						
						|  | if not isinstance(image, torch.Tensor): | 
					
						
						|  | image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  | image_embeddings = self.image_encoder(image).image_embeds | 
					
						
						|  |  | 
					
						
						|  | image_embeddings = image_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  | return image_embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_sequential_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's | 
					
						
						|  | models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only | 
					
						
						|  | when their specific submodule has its `forward` method called. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available(): | 
					
						
						|  | from accelerate import cpu_offload | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("Please install accelerate via `pip install accelerate`") | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | models = [ | 
					
						
						|  | self.decoder, | 
					
						
						|  | self.text_proj, | 
					
						
						|  | self.text_encoder, | 
					
						
						|  | self.super_res_first, | 
					
						
						|  | self.super_res_last, | 
					
						
						|  | ] | 
					
						
						|  | for cpu_offloaded_model in models: | 
					
						
						|  | if cpu_offloaded_model is not None: | 
					
						
						|  | cpu_offload(cpu_offloaded_model, device) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def _execution_device(self): | 
					
						
						|  | r""" | 
					
						
						|  | Returns the device on which the pipeline's models will be executed. After calling | 
					
						
						|  | `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | 
					
						
						|  | hooks. | 
					
						
						|  | """ | 
					
						
						|  | if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"): | 
					
						
						|  | return self.device | 
					
						
						|  | for module in self.decoder.modules(): | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(module, "_hf_hook") | 
					
						
						|  | and hasattr(module._hf_hook, "execution_device") | 
					
						
						|  | and module._hf_hook.execution_device is not None | 
					
						
						|  | ): | 
					
						
						|  | return torch.device(module._hf_hook.execution_device) | 
					
						
						|  | return self.device | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | image: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None, | 
					
						
						|  | steps: int = 5, | 
					
						
						|  | decoder_num_inference_steps: int = 25, | 
					
						
						|  | super_res_num_inference_steps: int = 7, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | image_embeddings: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | super_res_latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_guidance_scale: float = 8.0, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image (`List[PIL.Image.Image]` or `torch.FloatTensor`): | 
					
						
						|  | The images to use for the image interpolation. Only accepts a list of two PIL Images or If you provide a tensor, it needs to comply with the | 
					
						
						|  | configuration of | 
					
						
						|  | [this](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json) | 
					
						
						|  | `CLIPImageProcessor` while still having a shape of two in the 0th dimension. Can be left to `None` only when `image_embeddings` are passed. | 
					
						
						|  | steps (`int`, *optional*, defaults to 5): | 
					
						
						|  | The number of interpolation images to generate. | 
					
						
						|  | decoder_num_inference_steps (`int`, *optional*, defaults to 25): | 
					
						
						|  | The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality | 
					
						
						|  | image at the expense of slower inference. | 
					
						
						|  | super_res_num_inference_steps (`int`, *optional*, defaults to 7): | 
					
						
						|  | The number of denoising steps for super resolution. More denoising steps usually lead to a higher | 
					
						
						|  | quality image at the expense of slower inference. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | image_embeddings (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings | 
					
						
						|  | can be passed for tasks like image interpolations. `image` can the be left to `None`. | 
					
						
						|  | decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*): | 
					
						
						|  | Pre-generated noisy latents to be used as inputs for the decoder. | 
					
						
						|  | super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*): | 
					
						
						|  | Pre-generated noisy latents to be used as inputs for the decoder. | 
					
						
						|  | decoder_guidance_scale (`float`, *optional*, defaults to 4.0): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generated image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | batch_size = steps | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, List): | 
					
						
						|  | if len(image) != 2: | 
					
						
						|  | raise AssertionError( | 
					
						
						|  | f"Expected 'image' List to be of size 2, but passed 'image' length is {len(image)}" | 
					
						
						|  | ) | 
					
						
						|  | elif not (isinstance(image[0], PIL.Image.Image) and isinstance(image[0], PIL.Image.Image)): | 
					
						
						|  | raise AssertionError( | 
					
						
						|  | f"Expected 'image' List to contain PIL.Image.Image, but passed 'image' contents are {type(image[0])} and {type(image[1])}" | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(image, torch.FloatTensor): | 
					
						
						|  | if image.shape[0] != 2: | 
					
						
						|  | raise AssertionError( | 
					
						
						|  | f"Expected 'image' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image' size is {image.shape[0]}" | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(image_embeddings, torch.Tensor): | 
					
						
						|  | if image_embeddings.shape[0] != 2: | 
					
						
						|  | raise AssertionError( | 
					
						
						|  | f"Expected 'image_embeddings' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image_embeddings' shape is {image_embeddings.shape[0]}" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise AssertionError( | 
					
						
						|  | f"Expected 'image' or 'image_embeddings' to be not None with types List[PIL.Image] or Torch.FloatTensor respectively. Received {type(image)} and {type(image_embeddings)} repsectively" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | original_image_embeddings = self._encode_image( | 
					
						
						|  | image=image, device=device, num_images_per_prompt=1, image_embeddings=image_embeddings | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_embeddings = [] | 
					
						
						|  |  | 
					
						
						|  | for interp_step in torch.linspace(0, 1, steps): | 
					
						
						|  | temp_image_embeddings = slerp( | 
					
						
						|  | interp_step, original_image_embeddings[0], original_image_embeddings[1] | 
					
						
						|  | ).unsqueeze(0) | 
					
						
						|  | image_embeddings.append(temp_image_embeddings) | 
					
						
						|  |  | 
					
						
						|  | image_embeddings = torch.cat(image_embeddings).to(device) | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = decoder_guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( | 
					
						
						|  | prompt=["" for i in range(steps)], | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=1, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( | 
					
						
						|  | image_embeddings=image_embeddings, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | text_encoder_hidden_states=text_encoder_hidden_states, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if device.type == "mps": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_mask = text_mask.type(torch.int) | 
					
						
						|  | decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) | 
					
						
						|  | decoder_text_mask = decoder_text_mask.type(torch.bool) | 
					
						
						|  | else: | 
					
						
						|  | decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) | 
					
						
						|  |  | 
					
						
						|  | self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) | 
					
						
						|  | decoder_timesteps_tensor = self.decoder_scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.decoder.config.in_channels | 
					
						
						|  | height = self.decoder.config.sample_size | 
					
						
						|  | width = self.decoder.config.sample_size | 
					
						
						|  |  | 
					
						
						|  | decoder_latents = self.prepare_latents( | 
					
						
						|  | (batch_size, num_channels_latents, height, width), | 
					
						
						|  | text_encoder_hidden_states.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | decoder_latents, | 
					
						
						|  | self.decoder_scheduler, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.decoder( | 
					
						
						|  | sample=latent_model_input, | 
					
						
						|  | timestep=t, | 
					
						
						|  | encoder_hidden_states=text_encoder_hidden_states, | 
					
						
						|  | class_labels=additive_clip_time_embeddings, | 
					
						
						|  | attention_mask=decoder_text_mask, | 
					
						
						|  | ).sample | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) | 
					
						
						|  | noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) | 
					
						
						|  | noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  | noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) | 
					
						
						|  |  | 
					
						
						|  | if i + 1 == decoder_timesteps_tensor.shape[0]: | 
					
						
						|  | prev_timestep = None | 
					
						
						|  | else: | 
					
						
						|  | prev_timestep = decoder_timesteps_tensor[i + 1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decoder_latents = self.decoder_scheduler.step( | 
					
						
						|  | noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator | 
					
						
						|  | ).prev_sample | 
					
						
						|  |  | 
					
						
						|  | decoder_latents = decoder_latents.clamp(-1, 1) | 
					
						
						|  |  | 
					
						
						|  | image_small = decoder_latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) | 
					
						
						|  | super_res_timesteps_tensor = self.super_res_scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  | channels = self.super_res_first.config.in_channels // 2 | 
					
						
						|  | height = self.super_res_first.config.sample_size | 
					
						
						|  | width = self.super_res_first.config.sample_size | 
					
						
						|  |  | 
					
						
						|  | super_res_latents = self.prepare_latents( | 
					
						
						|  | (batch_size, channels, height, width), | 
					
						
						|  | image_small.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | super_res_latents, | 
					
						
						|  | self.super_res_scheduler, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if device.type == "mps": | 
					
						
						|  |  | 
					
						
						|  | image_upscaled = F.interpolate(image_small, size=[height, width]) | 
					
						
						|  | else: | 
					
						
						|  | interpolate_antialias = {} | 
					
						
						|  | if "antialias" in inspect.signature(F.interpolate).parameters: | 
					
						
						|  | interpolate_antialias["antialias"] = True | 
					
						
						|  |  | 
					
						
						|  | image_upscaled = F.interpolate( | 
					
						
						|  | image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == super_res_timesteps_tensor.shape[0] - 1: | 
					
						
						|  | unet = self.super_res_last | 
					
						
						|  | else: | 
					
						
						|  | unet = self.super_res_first | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) | 
					
						
						|  |  | 
					
						
						|  | noise_pred = unet( | 
					
						
						|  | sample=latent_model_input, | 
					
						
						|  | timestep=t, | 
					
						
						|  | ).sample | 
					
						
						|  |  | 
					
						
						|  | if i + 1 == super_res_timesteps_tensor.shape[0]: | 
					
						
						|  | prev_timestep = None | 
					
						
						|  | else: | 
					
						
						|  | prev_timestep = super_res_timesteps_tensor[i + 1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | super_res_latents = self.super_res_scheduler.step( | 
					
						
						|  | noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator | 
					
						
						|  | ).prev_sample | 
					
						
						|  |  | 
					
						
						|  | image = super_res_latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = image * 0.5 + 0.5 | 
					
						
						|  | image = image.clamp(0, 1) | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
						
						|  |  | 
					
						
						|  | if output_type == "pil": | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image,) | 
					
						
						|  |  | 
					
						
						|  | return ImagePipelineOutput(images=image) | 
					
						
						|  |  |