|  | import glob | 
					
						
						|  | import os | 
					
						
						|  | from typing import Dict, List, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from diffusers.utils import is_safetensors_available | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_safetensors_available(): | 
					
						
						|  | import safetensors.torch | 
					
						
						|  |  | 
					
						
						|  | from huggingface_hub import snapshot_download | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DiffusionPipeline, __version__ | 
					
						
						|  | from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME | 
					
						
						|  | from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CheckpointMergerPipeline(DiffusionPipeline): | 
					
						
						|  | """ | 
					
						
						|  | A class that that supports merging diffusion models based on the discussion here: | 
					
						
						|  | https://github.com/huggingface/diffusers/issues/877 | 
					
						
						|  |  | 
					
						
						|  | Example usage:- | 
					
						
						|  |  | 
					
						
						|  | pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py") | 
					
						
						|  |  | 
					
						
						|  | merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True) | 
					
						
						|  |  | 
					
						
						|  | merged_pipe.to('cuda') | 
					
						
						|  |  | 
					
						
						|  | prompt = "An astronaut riding a unicycle on Mars" | 
					
						
						|  |  | 
					
						
						|  | results = merged_pipe(prompt) | 
					
						
						|  |  | 
					
						
						|  | ## For more details, see the docstring for the merge method. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self): | 
					
						
						|  | self.register_to_config() | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | def _compare_model_configs(self, dict0, dict1): | 
					
						
						|  | if dict0 == dict1: | 
					
						
						|  | return True | 
					
						
						|  | else: | 
					
						
						|  | config0, meta_keys0 = self._remove_meta_keys(dict0) | 
					
						
						|  | config1, meta_keys1 = self._remove_meta_keys(dict1) | 
					
						
						|  | if config0 == config1: | 
					
						
						|  | print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.") | 
					
						
						|  | return True | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  | def _remove_meta_keys(self, config_dict: Dict): | 
					
						
						|  | meta_keys = [] | 
					
						
						|  | temp_dict = config_dict.copy() | 
					
						
						|  | for key in config_dict.keys(): | 
					
						
						|  | if key.startswith("_"): | 
					
						
						|  | temp_dict.pop(key) | 
					
						
						|  | meta_keys.append(key) | 
					
						
						|  | return (temp_dict, meta_keys) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed | 
					
						
						|  | in the argument 'pretrained_model_name_or_path_list' as a list. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | ----------- | 
					
						
						|  | pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format. | 
					
						
						|  |  | 
					
						
						|  | **kwargs: | 
					
						
						|  | Supports all the default DiffusionPipeline.get_config_dict kwargs viz.. | 
					
						
						|  |  | 
					
						
						|  | cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map. | 
					
						
						|  |  | 
					
						
						|  | alpha - The interpolation parameter. Ranges from 0 to 1.  It affects the ratio in which the checkpoints are merged. A 0.8 alpha | 
					
						
						|  | would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2 | 
					
						
						|  |  | 
					
						
						|  | interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None. | 
					
						
						|  | Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported. | 
					
						
						|  |  | 
					
						
						|  | force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | 
					
						
						|  | resume_download = kwargs.pop("resume_download", False) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", False) | 
					
						
						|  | use_auth_token = kwargs.pop("use_auth_token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | torch_dtype = kwargs.pop("torch_dtype", None) | 
					
						
						|  | device_map = kwargs.pop("device_map", None) | 
					
						
						|  |  | 
					
						
						|  | alpha = kwargs.pop("alpha", 0.5) | 
					
						
						|  | interp = kwargs.pop("interp", None) | 
					
						
						|  |  | 
					
						
						|  | print("Received list", pretrained_model_name_or_path_list) | 
					
						
						|  | print(f"Combining with alpha={alpha}, interpolation mode={interp}") | 
					
						
						|  |  | 
					
						
						|  | checkpoint_count = len(pretrained_model_name_or_path_list) | 
					
						
						|  |  | 
					
						
						|  | force = kwargs.pop("force", False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if checkpoint_count > 3 or checkpoint_count < 2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being" | 
					
						
						|  | " passed." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | print("Received the right number of checkpoints") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config_dicts = [] | 
					
						
						|  | for pretrained_model_name_or_path in pretrained_model_name_or_path_list: | 
					
						
						|  | config_dict = DiffusionPipeline.load_config( | 
					
						
						|  | pretrained_model_name_or_path, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | resume_download=resume_download, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | use_auth_token=use_auth_token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | ) | 
					
						
						|  | config_dicts.append(config_dict) | 
					
						
						|  |  | 
					
						
						|  | comparison_result = True | 
					
						
						|  | for idx in range(1, len(config_dicts)): | 
					
						
						|  | comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx]) | 
					
						
						|  | if not force and comparison_result is False: | 
					
						
						|  | raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.") | 
					
						
						|  | print(config_dicts[0], config_dicts[1]) | 
					
						
						|  | print("Compatible model_index.json files found") | 
					
						
						|  |  | 
					
						
						|  | cached_folders = [] | 
					
						
						|  | for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts): | 
					
						
						|  | folder_names = [k for k in config_dict.keys() if not k.startswith("_")] | 
					
						
						|  | allow_patterns = [os.path.join(k, "*") for k in folder_names] | 
					
						
						|  | allow_patterns += [ | 
					
						
						|  | WEIGHTS_NAME, | 
					
						
						|  | SCHEDULER_CONFIG_NAME, | 
					
						
						|  | CONFIG_NAME, | 
					
						
						|  | ONNX_WEIGHTS_NAME, | 
					
						
						|  | DiffusionPipeline.config_name, | 
					
						
						|  | ] | 
					
						
						|  | requested_pipeline_class = config_dict.get("_class_name") | 
					
						
						|  | user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class} | 
					
						
						|  |  | 
					
						
						|  | cached_folder = ( | 
					
						
						|  | pretrained_model_name_or_path | 
					
						
						|  | if os.path.isdir(pretrained_model_name_or_path) | 
					
						
						|  | else snapshot_download( | 
					
						
						|  | pretrained_model_name_or_path, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | resume_download=resume_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | use_auth_token=use_auth_token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | allow_patterns=allow_patterns, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | print("Cached Folder", cached_folder) | 
					
						
						|  | cached_folders.append(cached_folder) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | final_pipe = DiffusionPipeline.from_pretrained( | 
					
						
						|  | cached_folders[0], torch_dtype=torch_dtype, device_map=device_map | 
					
						
						|  | ) | 
					
						
						|  | final_pipe.to(self.device) | 
					
						
						|  |  | 
					
						
						|  | checkpoint_path_2 = None | 
					
						
						|  | if len(cached_folders) > 2: | 
					
						
						|  | checkpoint_path_2 = os.path.join(cached_folders[2]) | 
					
						
						|  |  | 
					
						
						|  | if interp == "sigmoid": | 
					
						
						|  | theta_func = CheckpointMergerPipeline.sigmoid | 
					
						
						|  | elif interp == "inv_sigmoid": | 
					
						
						|  | theta_func = CheckpointMergerPipeline.inv_sigmoid | 
					
						
						|  | elif interp == "add_diff": | 
					
						
						|  | theta_func = CheckpointMergerPipeline.add_difference | 
					
						
						|  | else: | 
					
						
						|  | theta_func = CheckpointMergerPipeline.weighted_sum | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for attr in final_pipe.config.keys(): | 
					
						
						|  | if not attr.startswith("_"): | 
					
						
						|  | checkpoint_path_1 = os.path.join(cached_folders[1], attr) | 
					
						
						|  | if os.path.exists(checkpoint_path_1): | 
					
						
						|  | files = [ | 
					
						
						|  | *glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")), | 
					
						
						|  | *glob.glob(os.path.join(checkpoint_path_1, "*.bin")), | 
					
						
						|  | ] | 
					
						
						|  | checkpoint_path_1 = files[0] if len(files) > 0 else None | 
					
						
						|  | if len(cached_folders) < 3: | 
					
						
						|  | checkpoint_path_2 = None | 
					
						
						|  | else: | 
					
						
						|  | checkpoint_path_2 = os.path.join(cached_folders[2], attr) | 
					
						
						|  | if os.path.exists(checkpoint_path_2): | 
					
						
						|  | files = [ | 
					
						
						|  | *glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")), | 
					
						
						|  | *glob.glob(os.path.join(checkpoint_path_2, "*.bin")), | 
					
						
						|  | ] | 
					
						
						|  | checkpoint_path_2 = files[0] if len(files) > 0 else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if checkpoint_path_1 is None and checkpoint_path_2 is None: | 
					
						
						|  | print(f"Skipping {attr}: not present in 2nd or 3d model") | 
					
						
						|  | continue | 
					
						
						|  | try: | 
					
						
						|  | module = getattr(final_pipe, attr) | 
					
						
						|  | if isinstance(module, bool): | 
					
						
						|  | continue | 
					
						
						|  | theta_0 = getattr(module, "state_dict") | 
					
						
						|  | theta_0 = theta_0() | 
					
						
						|  |  | 
					
						
						|  | update_theta_0 = getattr(module, "load_state_dict") | 
					
						
						|  | theta_1 = ( | 
					
						
						|  | safetensors.torch.load_file(checkpoint_path_1) | 
					
						
						|  | if (is_safetensors_available() and checkpoint_path_1.endswith(".safetensors")) | 
					
						
						|  | else torch.load(checkpoint_path_1, map_location="cpu") | 
					
						
						|  | ) | 
					
						
						|  | theta_2 = None | 
					
						
						|  | if checkpoint_path_2: | 
					
						
						|  | theta_2 = ( | 
					
						
						|  | safetensors.torch.load_file(checkpoint_path_2) | 
					
						
						|  | if (is_safetensors_available() and checkpoint_path_2.endswith(".safetensors")) | 
					
						
						|  | else torch.load(checkpoint_path_2, map_location="cpu") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not theta_0.keys() == theta_1.keys(): | 
					
						
						|  | print(f"Skipping {attr}: key mismatch") | 
					
						
						|  | continue | 
					
						
						|  | if theta_2 and not theta_1.keys() == theta_2.keys(): | 
					
						
						|  | print(f"Skipping {attr}:y mismatch") | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Skipping {attr} do to an unexpected error: {str(e)}") | 
					
						
						|  | continue | 
					
						
						|  | print(f"MERGING {attr}") | 
					
						
						|  |  | 
					
						
						|  | for key in theta_0.keys(): | 
					
						
						|  | if theta_2: | 
					
						
						|  | theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha) | 
					
						
						|  | else: | 
					
						
						|  | theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha) | 
					
						
						|  |  | 
					
						
						|  | del theta_1 | 
					
						
						|  | del theta_2 | 
					
						
						|  | update_theta_0(theta_0) | 
					
						
						|  |  | 
					
						
						|  | del theta_0 | 
					
						
						|  | return final_pipe | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def weighted_sum(theta0, theta1, theta2, alpha): | 
					
						
						|  | return ((1 - alpha) * theta0) + (alpha * theta1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def sigmoid(theta0, theta1, theta2, alpha): | 
					
						
						|  | alpha = alpha * alpha * (3 - (2 * alpha)) | 
					
						
						|  | return theta0 + ((theta1 - theta0) * alpha) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def inv_sigmoid(theta0, theta1, theta2, alpha): | 
					
						
						|  | import math | 
					
						
						|  |  | 
					
						
						|  | alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0) | 
					
						
						|  | return theta0 + ((theta1 - theta0) * alpha) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def add_difference(theta0, theta1, theta2, alpha): | 
					
						
						|  | return theta0 + (theta1 - theta2) * (1.0 - alpha) | 
					
						
						|  |  |