|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | import os | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DiffusionPipeline, StableDiffusionXLPipeline | 
					
						
						|  | from diffusers.image_processor import VaeImageProcessor | 
					
						
						|  | from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | from diffusers.models import AutoencoderKL, UNet2DConditionModel | 
					
						
						|  | from diffusers.models.attention_processor import ( | 
					
						
						|  | AttnProcessor2_0, | 
					
						
						|  | LoRAAttnProcessor2_0, | 
					
						
						|  | LoRAXFormersAttnProcessor, | 
					
						
						|  | XFormersAttnProcessor, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | 
					
						
						|  | from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | is_accelerate_available, | 
					
						
						|  | is_accelerate_version, | 
					
						
						|  | is_invisible_watermark_available, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_invisible_watermark_available(): | 
					
						
						|  | from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_prompt_attention(text): | 
					
						
						|  | """ | 
					
						
						|  | Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | 
					
						
						|  | Accepted tokens are: | 
					
						
						|  | (abc) - increases attention to abc by a multiplier of 1.1 | 
					
						
						|  | (abc:3.12) - increases attention to abc by a multiplier of 3.12 | 
					
						
						|  | [abc] - decreases attention to abc by a multiplier of 1.1 | 
					
						
						|  | \( - literal character '(' | 
					
						
						|  | \[ - literal character '[' | 
					
						
						|  | \) - literal character ')' | 
					
						
						|  | \] - literal character ']' | 
					
						
						|  | \\ - literal character '\' | 
					
						
						|  | anything else - just text | 
					
						
						|  |  | 
					
						
						|  | >>> parse_prompt_attention('normal text') | 
					
						
						|  | [['normal text', 1.0]] | 
					
						
						|  | >>> parse_prompt_attention('an (important) word') | 
					
						
						|  | [['an ', 1.0], ['important', 1.1], [' word', 1.0]] | 
					
						
						|  | >>> parse_prompt_attention('(unbalanced') | 
					
						
						|  | [['unbalanced', 1.1]] | 
					
						
						|  | >>> parse_prompt_attention('\(literal\]') | 
					
						
						|  | [['(literal]', 1.0]] | 
					
						
						|  | >>> parse_prompt_attention('(unnecessary)(parens)') | 
					
						
						|  | [['unnecessaryparens', 1.1]] | 
					
						
						|  | >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | 
					
						
						|  | [['a ', 1.0], | 
					
						
						|  | ['house', 1.5730000000000004], | 
					
						
						|  | [' ', 1.1], | 
					
						
						|  | ['on', 1.0], | 
					
						
						|  | [' a ', 1.1], | 
					
						
						|  | ['hill', 0.55], | 
					
						
						|  | [', sun, ', 1.1], | 
					
						
						|  | ['sky', 1.4641000000000006], | 
					
						
						|  | ['.', 1.1]] | 
					
						
						|  | """ | 
					
						
						|  | import re | 
					
						
						|  |  | 
					
						
						|  | re_attention = re.compile( | 
					
						
						|  | r""" | 
					
						
						|  | \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| | 
					
						
						|  | \)|]|[^\\()\[\]:]+|: | 
					
						
						|  | """, | 
					
						
						|  | re.X, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) | 
					
						
						|  |  | 
					
						
						|  | res = [] | 
					
						
						|  | round_brackets = [] | 
					
						
						|  | square_brackets = [] | 
					
						
						|  |  | 
					
						
						|  | round_bracket_multiplier = 1.1 | 
					
						
						|  | square_bracket_multiplier = 1 / 1.1 | 
					
						
						|  |  | 
					
						
						|  | def multiply_range(start_position, multiplier): | 
					
						
						|  | for p in range(start_position, len(res)): | 
					
						
						|  | res[p][1] *= multiplier | 
					
						
						|  |  | 
					
						
						|  | for m in re_attention.finditer(text): | 
					
						
						|  | text = m.group(0) | 
					
						
						|  | weight = m.group(1) | 
					
						
						|  |  | 
					
						
						|  | if text.startswith("\\"): | 
					
						
						|  | res.append([text[1:], 1.0]) | 
					
						
						|  | elif text == "(": | 
					
						
						|  | round_brackets.append(len(res)) | 
					
						
						|  | elif text == "[": | 
					
						
						|  | square_brackets.append(len(res)) | 
					
						
						|  | elif weight is not None and len(round_brackets) > 0: | 
					
						
						|  | multiply_range(round_brackets.pop(), float(weight)) | 
					
						
						|  | elif text == ")" and len(round_brackets) > 0: | 
					
						
						|  | multiply_range(round_brackets.pop(), round_bracket_multiplier) | 
					
						
						|  | elif text == "]" and len(square_brackets) > 0: | 
					
						
						|  | multiply_range(square_brackets.pop(), square_bracket_multiplier) | 
					
						
						|  | else: | 
					
						
						|  | parts = re.split(re_break, text) | 
					
						
						|  | for i, part in enumerate(parts): | 
					
						
						|  | if i > 0: | 
					
						
						|  | res.append(["BREAK", -1]) | 
					
						
						|  | res.append([part, 1.0]) | 
					
						
						|  |  | 
					
						
						|  | for pos in round_brackets: | 
					
						
						|  | multiply_range(pos, round_bracket_multiplier) | 
					
						
						|  |  | 
					
						
						|  | for pos in square_brackets: | 
					
						
						|  | multiply_range(pos, square_bracket_multiplier) | 
					
						
						|  |  | 
					
						
						|  | if len(res) == 0: | 
					
						
						|  | res = [["", 1.0]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | i = 0 | 
					
						
						|  | while i + 1 < len(res): | 
					
						
						|  | if res[i][1] == res[i + 1][1]: | 
					
						
						|  | res[i][0] += res[i + 1][0] | 
					
						
						|  | res.pop(i + 1) | 
					
						
						|  | else: | 
					
						
						|  | i += 1 | 
					
						
						|  |  | 
					
						
						|  | return res | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str): | 
					
						
						|  | """ | 
					
						
						|  | Get prompt token ids and weights, this function works for both prompt and negative prompt | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | pipe (CLIPTokenizer) | 
					
						
						|  | A CLIPTokenizer | 
					
						
						|  | prompt (str) | 
					
						
						|  | A prompt string with weights | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | text_tokens (list) | 
					
						
						|  | A list contains token ids | 
					
						
						|  | text_weight (list) | 
					
						
						|  | A list contains the correspodent weight of token ids | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | clip_tokenizer = CLIPTokenizer.from_pretrained( | 
					
						
						|  | "stablediffusionapi/deliberate-v2" | 
					
						
						|  | , subfolder = "tokenizer" | 
					
						
						|  | , dtype = torch.float16 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | token_id_list, token_weight_list = get_prompts_tokens_with_weights( | 
					
						
						|  | clip_tokenizer = clip_tokenizer | 
					
						
						|  | ,prompt = "a (red:1.5) cat"*70 | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  | texts_and_weights = parse_prompt_attention(prompt) | 
					
						
						|  | text_tokens, text_weights = [], [] | 
					
						
						|  | for word, weight in texts_and_weights: | 
					
						
						|  |  | 
					
						
						|  | token = clip_tokenizer(word, truncation=False).input_ids[1:-1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_tokens = [*text_tokens, *token] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | chunk_weights = [weight] * len(token) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_weights = [*text_weights, *chunk_weights] | 
					
						
						|  | return text_tokens, text_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False): | 
					
						
						|  | """ | 
					
						
						|  | Produce tokens and weights in groups and pad the missing tokens | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids (list) | 
					
						
						|  | The token ids from tokenizer | 
					
						
						|  | weights (list) | 
					
						
						|  | The weights list from function get_prompts_tokens_with_weights | 
					
						
						|  | pad_last_block (bool) | 
					
						
						|  | Control if fill the last token list to 75 tokens with eos | 
					
						
						|  | Returns: | 
					
						
						|  | new_token_ids (2d list) | 
					
						
						|  | new_weights (2d list) | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  | token_groups,weight_groups = group_tokens_and_weights( | 
					
						
						|  | token_ids = token_id_list | 
					
						
						|  | , weights = token_weight_list | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  | bos, eos = 49406, 49407 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_token_ids = [] | 
					
						
						|  | new_weights = [] | 
					
						
						|  | while len(token_ids) >= 75: | 
					
						
						|  |  | 
					
						
						|  | head_75_tokens = [token_ids.pop(0) for _ in range(75)] | 
					
						
						|  | head_75_weights = [weights.pop(0) for _ in range(75)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | temp_77_token_ids = [bos] + head_75_tokens + [eos] | 
					
						
						|  | temp_77_weights = [1.0] + head_75_weights + [1.0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_token_ids.append(temp_77_token_ids) | 
					
						
						|  | new_weights.append(temp_77_weights) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(token_ids) > 0: | 
					
						
						|  | padding_len = 75 - len(token_ids) if pad_last_block else 0 | 
					
						
						|  |  | 
					
						
						|  | temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] | 
					
						
						|  | new_token_ids.append(temp_77_token_ids) | 
					
						
						|  |  | 
					
						
						|  | temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] | 
					
						
						|  | new_weights.append(temp_77_weights) | 
					
						
						|  |  | 
					
						
						|  | return new_token_ids, new_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_weighted_text_embeddings_sdxl( | 
					
						
						|  | pipe: StableDiffusionXLPipeline, | 
					
						
						|  | prompt: str = "", | 
					
						
						|  | prompt_2: str = None, | 
					
						
						|  | neg_prompt: str = "", | 
					
						
						|  | neg_prompt_2: str = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This function can process long prompt with weights, no length limitation | 
					
						
						|  | for Stable Diffusion XL | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | pipe (StableDiffusionPipeline) | 
					
						
						|  | prompt (str) | 
					
						
						|  | prompt_2 (str) | 
					
						
						|  | neg_prompt (str) | 
					
						
						|  | neg_prompt_2 (str) | 
					
						
						|  | Returns: | 
					
						
						|  | prompt_embeds (torch.Tensor) | 
					
						
						|  | neg_prompt_embeds (torch.Tensor) | 
					
						
						|  | """ | 
					
						
						|  | if prompt_2: | 
					
						
						|  | prompt = f"{prompt} {prompt_2}" | 
					
						
						|  |  | 
					
						
						|  | if neg_prompt_2: | 
					
						
						|  | neg_prompt = f"{neg_prompt} {neg_prompt_2}" | 
					
						
						|  |  | 
					
						
						|  | eos = pipe.tokenizer.eos_token_id | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt) | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt) | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_token_len = len(prompt_tokens) | 
					
						
						|  | neg_prompt_token_len = len(neg_prompt_tokens) | 
					
						
						|  |  | 
					
						
						|  | if prompt_token_len > neg_prompt_token_len: | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) | 
					
						
						|  | neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) | 
					
						
						|  | prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_token_len_2 = len(prompt_tokens_2) | 
					
						
						|  | neg_prompt_token_len_2 = len(neg_prompt_tokens_2) | 
					
						
						|  |  | 
					
						
						|  | if prompt_token_len_2 > neg_prompt_token_len_2: | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | 
					
						
						|  | neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | 
					
						
						|  | prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | 
					
						
						|  |  | 
					
						
						|  | embeds = [] | 
					
						
						|  | neg_embeds = [] | 
					
						
						|  |  | 
					
						
						|  | prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy()) | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights( | 
					
						
						|  | neg_prompt_tokens.copy(), neg_prompt_weights.copy() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights( | 
					
						
						|  | prompt_tokens_2.copy(), prompt_weights_2.copy() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights( | 
					
						
						|  | neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(prompt_token_groups)): | 
					
						
						|  |  | 
					
						
						|  | token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device) | 
					
						
						|  | weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device) | 
					
						
						|  |  | 
					
						
						|  | token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True) | 
					
						
						|  | prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True) | 
					
						
						|  | prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] | 
					
						
						|  | pooled_prompt_embeds = prompt_embeds_2[0] | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states] | 
					
						
						|  | token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | for j in range(len(weight_tensor)): | 
					
						
						|  | if weight_tensor[j] != 1.0: | 
					
						
						|  | token_embedding[j] = ( | 
					
						
						|  | token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | token_embedding = token_embedding.unsqueeze(0) | 
					
						
						|  | embeds.append(token_embedding) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device) | 
					
						
						|  | neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device) | 
					
						
						|  | neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True) | 
					
						
						|  | neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True) | 
					
						
						|  | neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] | 
					
						
						|  | negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] | 
					
						
						|  |  | 
					
						
						|  | neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states] | 
					
						
						|  | neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | for z in range(len(neg_weight_tensor)): | 
					
						
						|  | if neg_weight_tensor[z] != 1.0: | 
					
						
						|  | neg_token_embedding[z] = ( | 
					
						
						|  | neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | neg_token_embedding = neg_token_embedding.unsqueeze(0) | 
					
						
						|  | neg_embeds.append(neg_token_embedding) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat(embeds, dim=1) | 
					
						
						|  | negative_prompt_embeds = torch.cat(neg_embeds, dim=1) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipe = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0" | 
					
						
						|  | , torch_dtype       = torch.float16 | 
					
						
						|  | , use_safetensors   = True | 
					
						
						|  | , variant           = "fp16" | 
					
						
						|  | , custom_pipeline   = "lpw_stable_diffusion_xl", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt = "a white cat running on the grass"*20 | 
					
						
						|  | prompt2 = "play a football"*20 | 
					
						
						|  | prompt = f"{prompt},{prompt2}" | 
					
						
						|  | neg_prompt = "blur, low quality" | 
					
						
						|  |  | 
					
						
						|  | pipe.to("cuda") | 
					
						
						|  | images = pipe( | 
					
						
						|  | prompt                  = prompt | 
					
						
						|  | , negative_prompt       = neg_prompt | 
					
						
						|  | ).images[0] | 
					
						
						|  |  | 
					
						
						|  | pipe.to("cpu") | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | images | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | 
					
						
						|  | """ | 
					
						
						|  | Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | 
					
						
						|  | Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | 
					
						
						|  | """ | 
					
						
						|  | std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | 
					
						
						|  | std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | 
					
						
						|  |  | 
					
						
						|  | noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | 
					
						
						|  | return noise_cfg | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SDXLLongPromptWeightingPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using Stable Diffusion XL. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | In addition the pipeline inherits the following loading methods: | 
					
						
						|  | - *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`] | 
					
						
						|  | - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | 
					
						
						|  |  | 
					
						
						|  | as well as the following saving methods: | 
					
						
						|  | - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder. Stable Diffusion XL uses the text portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | text_encoder_2 ([` CLIPTextModelWithProjection`]): | 
					
						
						|  | Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | 
					
						
						|  | specifically the | 
					
						
						|  | [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | 
					
						
						|  | variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | tokenizer_2 (`CLIPTokenizer`): | 
					
						
						|  | Second Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | text_encoder_2: CLIPTextModelWithProjection, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | tokenizer_2: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | force_zeros_for_empty_prompt: bool = True, | 
					
						
						|  | add_watermarker: Optional[bool] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | text_encoder_2=text_encoder_2, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | tokenizer_2=tokenizer_2, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | ) | 
					
						
						|  | self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  | self.default_sample_size = self.unet.config.sample_size | 
					
						
						|  |  | 
					
						
						|  | add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | 
					
						
						|  |  | 
					
						
						|  | if add_watermarker: | 
					
						
						|  | self.watermark = StableDiffusionXLWatermarker() | 
					
						
						|  | else: | 
					
						
						|  | self.watermark = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | 
					
						
						|  | compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_slicing() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_slicing() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | 
					
						
						|  | compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | 
					
						
						|  | processing larger images. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_tiling() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_tiling() | 
					
						
						|  |  | 
					
						
						|  | def enable_model_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | 
					
						
						|  | to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | 
					
						
						|  | method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | 
					
						
						|  | `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | 
					
						
						|  | from accelerate import cpu_offload_with_hook | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | if self.device.type != "cpu": | 
					
						
						|  | self.to("cpu", silence_dtype_warnings=True) | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | model_sequence = ( | 
					
						
						|  | [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | 
					
						
						|  | ) | 
					
						
						|  | model_sequence.extend([self.unet, self.vae]) | 
					
						
						|  |  | 
					
						
						|  | hook = None | 
					
						
						|  | for cpu_offloaded_model in model_sequence: | 
					
						
						|  | _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.final_offload_hook = hook | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt: str, | 
					
						
						|  | prompt_2: Optional[str] = None, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | num_images_per_prompt: int = 1, | 
					
						
						|  | do_classifier_free_guidance: bool = True, | 
					
						
						|  | negative_prompt: Optional[str] = None, | 
					
						
						|  | negative_prompt_2: Optional[str] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | used in both text-encoders | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
						
						|  | `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
						
						|  | input argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | """ | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, LoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | 
					
						
						|  | text_encoders = ( | 
					
						
						|  | [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | prompt_2 = prompt_2 or prompt | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_list = [] | 
					
						
						|  | prompts = [prompt, prompt_2] | 
					
						
						|  | for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pooled_prompt_embeds = prompt_embeds[0] | 
					
						
						|  | prompt_embeds = prompt_embeds.hidden_states[-2] | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_list.append(prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | 
					
						
						|  | negative_prompt_embeds = torch.zeros_like(prompt_embeds) | 
					
						
						|  | negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | 
					
						
						|  | elif do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | negative_prompt = negative_prompt or "" | 
					
						
						|  | negative_prompt_2 = negative_prompt_2 or negative_prompt | 
					
						
						|  |  | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt, negative_prompt_2] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = [negative_prompt, negative_prompt_2] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds_list = [] | 
					
						
						|  | for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = tokenizer( | 
					
						
						|  | negative_prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_pooled_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds_list.append(negative_prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
						
						|  | bs_embed * num_images_per_prompt, -1 | 
					
						
						|  | ) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
						
						|  | bs_embed * num_images_per_prompt, -1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | negative_prompt_2=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | pooled_prompt_embeds=None, | 
					
						
						|  | negative_pooled_prompt_embeds=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if (callback_steps is None) or ( | 
					
						
						|  | callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt_2 is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  | elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | 
					
						
						|  | raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and pooled_prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
						
						|  | shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): | 
					
						
						|  | add_time_ids = list(original_size + crops_coords_top_left + target_size) | 
					
						
						|  |  | 
					
						
						|  | passed_add_embed_dim = ( | 
					
						
						|  | self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim | 
					
						
						|  | ) | 
					
						
						|  | expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | 
					
						
						|  |  | 
					
						
						|  | if expected_add_embed_dim != passed_add_embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | 
					
						
						|  | return add_time_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def upcast_vae(self): | 
					
						
						|  | dtype = self.vae.dtype | 
					
						
						|  | self.vae.to(dtype=torch.float32) | 
					
						
						|  | use_torch_2_0_or_xformers = isinstance( | 
					
						
						|  | self.vae.decoder.mid_block.attentions[0].processor, | 
					
						
						|  | ( | 
					
						
						|  | AttnProcessor2_0, | 
					
						
						|  | XFormersAttnProcessor, | 
					
						
						|  | LoRAXFormersAttnProcessor, | 
					
						
						|  | LoRAAttnProcessor2_0, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_torch_2_0_or_xformers: | 
					
						
						|  | self.vae.post_quant_conv.to(dtype) | 
					
						
						|  | self.vae.decoder.conv_in.to(dtype) | 
					
						
						|  | self.vae.decoder.mid_block.to(dtype) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: str = None, | 
					
						
						|  | prompt_2: Optional[str] = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | denoising_end: Optional[float] = None, | 
					
						
						|  | guidance_scale: float = 5.0, | 
					
						
						|  | negative_prompt: Optional[str] = None, | 
					
						
						|  | negative_prompt_2: Optional[str] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | guidance_rescale: float = 0.0, | 
					
						
						|  | original_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | crops_coords_top_left: Tuple[int, int] = (0, 0), | 
					
						
						|  | target_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str`): | 
					
						
						|  | The prompt  to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
						
						|  | instead. | 
					
						
						|  | prompt_2 (`str`): | 
					
						
						|  | The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | used in both text-encoders | 
					
						
						|  | height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | denoising_end (`float`, *optional*): | 
					
						
						|  | When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | 
					
						
						|  | completed before it is intentionally prematurely terminated. As a result, the returned sample will | 
					
						
						|  | still retain a substantial amount of noise as determined by the discrete timesteps selected by the | 
					
						
						|  | scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | 
					
						
						|  | "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | 
					
						
						|  | Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 5.0): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | negative_prompt (`str`): | 
					
						
						|  | The prompt not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | negative_prompt_2 (`str`): | 
					
						
						|  | The prompt not to guide the image generation to be sent to `tokenizer_2` and | 
					
						
						|  | `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
						
						|  | input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | 
					
						
						|  | of a plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that will be called every `callback_steps` steps during inference. The function will be | 
					
						
						|  | called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
						
						|  | called at every step. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | guidance_rescale (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | 
					
						
						|  | Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | 
					
						
						|  | [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | 
					
						
						|  | Guidance rescale factor should fix overexposure when using zero terminal SNR. | 
					
						
						|  | original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | 
					
						
						|  | `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | 
					
						
						|  | explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | 
					
						
						|  | `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | 
					
						
						|  | `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | 
					
						
						|  | `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | For most cases, `target_size` should be set to the desired height and width of the generated image. If | 
					
						
						|  | not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | 
					
						
						|  | section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | 
					
						
						|  | [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | 
					
						
						|  | `tuple`. When returning a tuple, the first element is a list with the generated images. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | height = height or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  | original_size = original_size or (height, width) | 
					
						
						|  | target_size = target_size or (height, width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | negative_prompt_2, | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt = negative_prompt if negative_prompt is not None else "" | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds, | 
					
						
						|  | ) = get_weighted_text_embeddings_sdxl(pipe=self, prompt=prompt, neg_prompt=negative_prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  |  | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | add_text_embeds = pooled_prompt_embeds | 
					
						
						|  | add_time_ids = self._get_add_time_ids( | 
					
						
						|  | original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | 
					
						
						|  | add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | 
					
						
						|  | add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(device) | 
					
						
						|  | add_text_embeds = add_text_embeds.to(device) | 
					
						
						|  | add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: | 
					
						
						|  | discrete_timestep_cutoff = int( | 
					
						
						|  | round( | 
					
						
						|  | self.scheduler.config.num_train_timesteps | 
					
						
						|  | - (denoising_end * self.scheduler.config.num_train_timesteps) | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | 
					
						
						|  | timesteps = timesteps[:num_inference_steps] | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and guidance_rescale > 0.0: | 
					
						
						|  |  | 
					
						
						|  | noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | step_idx = i // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, latents) | 
					
						
						|  |  | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  |  | 
					
						
						|  | needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.upcast_vae() | 
					
						
						|  | latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | 
					
						
						|  |  | 
					
						
						|  | image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.vae.to(dtype=torch.float16) | 
					
						
						|  | else: | 
					
						
						|  | image = latents | 
					
						
						|  | return StableDiffusionXLPipelineOutput(images=image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.watermark is not None: | 
					
						
						|  | image = self.watermark.apply_watermark(image) | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
						
						|  | self.final_offload_hook.offload() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image,) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionXLPipelineOutput(images=image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict, network_alphas = self.lora_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict, | 
					
						
						|  | unet_config=self.unet.config, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | 
					
						
						|  | if len(text_encoder_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=self.text_encoder, | 
					
						
						|  | prefix="text_encoder", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | 
					
						
						|  | if len(text_encoder_2_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_2_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=self.text_encoder_2, | 
					
						
						|  | prefix="text_encoder_2", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | self, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | def pack_weights(layers, prefix): | 
					
						
						|  | layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers | 
					
						
						|  | layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} | 
					
						
						|  | return layers_state_dict | 
					
						
						|  |  | 
					
						
						|  | state_dict.update(pack_weights(unet_lora_layers, "unet")) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_lora_layers and text_encoder_2_lora_layers: | 
					
						
						|  | state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) | 
					
						
						|  | state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | 
					
						
						|  |  | 
					
						
						|  | self.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _remove_text_encoder_monkey_patch(self): | 
					
						
						|  | self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) | 
					
						
						|  | self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) | 
					
						
						|  |  |