|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL.Image | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | 
					
						
						|  | from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | from diffusers.models import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter, UNet2DConditionModel | 
					
						
						|  | from diffusers.models.attention_processor import ( | 
					
						
						|  | AttnProcessor2_0, | 
					
						
						|  | LoRAAttnProcessor2_0, | 
					
						
						|  | LoRAXFormersAttnProcessor, | 
					
						
						|  | XFormersAttnProcessor, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
						
						|  | from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | 
					
						
						|  | from diffusers.pipelines.pipeline_utils import DiffusionPipeline | 
					
						
						|  | from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | 
					
						
						|  | from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
						
						|  | from diffusers.utils import ( | 
					
						
						|  | PIL_INTERPOLATION, | 
					
						
						|  | USE_PEFT_BACKEND, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | scale_lora_layers, | 
					
						
						|  | unscale_lora_layers, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from diffusers import T2IAdapter, StableDiffusionXLAdapterPipeline, DDPMScheduler | 
					
						
						|  | >>> from diffusers.utils import load_image | 
					
						
						|  | >>> from controlnet_aux.midas import MidasDetector | 
					
						
						|  |  | 
					
						
						|  | >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" | 
					
						
						|  | >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" | 
					
						
						|  |  | 
					
						
						|  | >>> image = load_image(img_url).resize((1024, 1024)) | 
					
						
						|  | >>> mask_image = load_image(mask_url).resize((1024, 1024)) | 
					
						
						|  |  | 
					
						
						|  | >>> midas_depth = MidasDetector.from_pretrained( | 
					
						
						|  | ...    "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large" | 
					
						
						|  | ... ).to("cuda") | 
					
						
						|  |  | 
					
						
						|  | >>> depth_image = midas_depth( | 
					
						
						|  | ...    image, detect_resolution=512, image_resolution=1024 | 
					
						
						|  | ... ) | 
					
						
						|  |  | 
					
						
						|  | >>> model_id = "stabilityai/stable-diffusion-xl-base-1.0" | 
					
						
						|  |  | 
					
						
						|  | >>> adapter = T2IAdapter.from_pretrained( | 
					
						
						|  | ...     "Adapter/t2iadapter", | 
					
						
						|  | ...     subfolder="sketch_sdxl_1.0", | 
					
						
						|  | ...     torch_dtype=torch.float16, | 
					
						
						|  | ...     adapter_type="full_adapter_xl", | 
					
						
						|  | ... ) | 
					
						
						|  |  | 
					
						
						|  | >>> controlnet = ControlNetModel.from_pretrained( | 
					
						
						|  | ...    "diffusers/controlnet-depth-sdxl-1.0", | 
					
						
						|  | ...    torch_dtype=torch.float16, | 
					
						
						|  | ...    variant="fp16", | 
					
						
						|  | ...    use_safetensors=True | 
					
						
						|  | ... ).to("cuda") | 
					
						
						|  |  | 
					
						
						|  | >>> scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler") | 
					
						
						|  |  | 
					
						
						|  | >>> pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | 
					
						
						|  | ...     model_id, | 
					
						
						|  | ...     adapter=adapter, | 
					
						
						|  | ...     controlnet=controlnet, | 
					
						
						|  | ...     torch_dtype=torch.float16, | 
					
						
						|  | ...     variant="fp16", | 
					
						
						|  | ...     scheduler=scheduler | 
					
						
						|  | ... ).to("cuda") | 
					
						
						|  |  | 
					
						
						|  | >>> strength = 0.5 | 
					
						
						|  |  | 
					
						
						|  | >>> generator = torch.manual_seed(42) | 
					
						
						|  | >>> sketch_image_out = pipe( | 
					
						
						|  | ...     prompt="a photo of a tiger sitting on a park bench", | 
					
						
						|  | ...     negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality", | 
					
						
						|  | ...     adapter_image=depth_image, | 
					
						
						|  | ...     control_image=mask_image, | 
					
						
						|  | ...     adapter_conditioning_scale=strength, | 
					
						
						|  | ...     controlnet_conditioning_scale=strength, | 
					
						
						|  | ...     generator=generator, | 
					
						
						|  | ...     guidance_scale=7.5, | 
					
						
						|  | ... ).images[0] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _preprocess_adapter_image(image, height, width): | 
					
						
						|  | if isinstance(image, torch.Tensor): | 
					
						
						|  | return image | 
					
						
						|  | elif isinstance(image, PIL.Image.Image): | 
					
						
						|  | image = [image] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image[0], PIL.Image.Image): | 
					
						
						|  | image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image] | 
					
						
						|  | image = [ | 
					
						
						|  | i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image | 
					
						
						|  | ] | 
					
						
						|  | image = np.concatenate(image, axis=0) | 
					
						
						|  | image = np.array(image).astype(np.float32) / 255.0 | 
					
						
						|  | image = image.transpose(0, 3, 1, 2) | 
					
						
						|  | image = torch.from_numpy(image) | 
					
						
						|  | elif isinstance(image[0], torch.Tensor): | 
					
						
						|  | if image[0].ndim == 3: | 
					
						
						|  | image = torch.stack(image, dim=0) | 
					
						
						|  | elif image[0].ndim == 4: | 
					
						
						|  | image = torch.cat(image, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}" | 
					
						
						|  | ) | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | 
					
						
						|  | """ | 
					
						
						|  | Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | 
					
						
						|  | Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | 
					
						
						|  | """ | 
					
						
						|  | std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | 
					
						
						|  | std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | 
					
						
						|  |  | 
					
						
						|  | noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | 
					
						
						|  | return noise_cfg | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionXLControlNetAdapterPipeline( | 
					
						
						|  | DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter | 
					
						
						|  | https://arxiv.org/abs/2302.08453 | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`): | 
					
						
						|  | Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a | 
					
						
						|  | list, the outputs from each Adapter are added together to create one combined additional conditioning. | 
					
						
						|  | adapter_weights (`List[float]`, *optional*, defaults to None): | 
					
						
						|  | List of floats representing the weight which will be multiply to each adapter's output before adding them | 
					
						
						|  | together. | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder. Stable Diffusion uses the text portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | 
					
						
						|  | feature_extractor ([`CLIPFeatureExtractor`]): | 
					
						
						|  | Model that extracts features from generated images to be used as inputs for the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" | 
					
						
						|  | _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | text_encoder_2: CLIPTextModelWithProjection, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | tokenizer_2: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]], | 
					
						
						|  | controlnet: Union[ControlNetModel, MultiControlNetModel], | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | force_zeros_for_empty_prompt: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet, (list, tuple)): | 
					
						
						|  | controlnet = MultiControlNetModel(controlnet) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | text_encoder_2=text_encoder_2, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | tokenizer_2=tokenizer_2, | 
					
						
						|  | unet=unet, | 
					
						
						|  | adapter=adapter, | 
					
						
						|  | controlnet=controlnet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | ) | 
					
						
						|  | self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  | self.control_image_processor = VaeImageProcessor( | 
					
						
						|  | vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | 
					
						
						|  | ) | 
					
						
						|  | self.default_sample_size = self.unet.config.sample_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | 
					
						
						|  | compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_slicing() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_slicing() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | 
					
						
						|  | compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | 
					
						
						|  | processing larger images. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_tiling() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_tiling() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt: str, | 
					
						
						|  | prompt_2: Optional[str] = None, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | num_images_per_prompt: int = 1, | 
					
						
						|  | do_classifier_free_guidance: bool = True, | 
					
						
						|  | negative_prompt: Optional[str] = None, | 
					
						
						|  | negative_prompt_2: Optional[str] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | used in both text-encoders | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
						
						|  | `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
						
						|  | input argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | """ | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | scale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder_2 is not None: | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | scale_lora_layers(self.text_encoder_2, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None: | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | 
					
						
						|  | text_encoders = ( | 
					
						
						|  | [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | prompt_2 = prompt_2 or prompt | 
					
						
						|  | prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_list = [] | 
					
						
						|  | prompts = [prompt, prompt_2] | 
					
						
						|  | for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pooled_prompt_embeds = prompt_embeds[0] | 
					
						
						|  | if clip_skip is None: | 
					
						
						|  | prompt_embeds = prompt_embeds.hidden_states[-2] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_list.append(prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | 
					
						
						|  | negative_prompt_embeds = torch.zeros_like(prompt_embeds) | 
					
						
						|  | negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | 
					
						
						|  | elif do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | negative_prompt = negative_prompt or "" | 
					
						
						|  | negative_prompt_2 = negative_prompt_2 or negative_prompt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | 
					
						
						|  | negative_prompt_2 = ( | 
					
						
						|  | batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = [negative_prompt, negative_prompt_2] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds_list = [] | 
					
						
						|  | for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = tokenizer( | 
					
						
						|  | negative_prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_pooled_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds_list.append(negative_prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder_2 is not None: | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder_2 is not None: | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
						
						|  | else: | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
						
						|  | bs_embed * num_images_per_prompt, -1 | 
					
						
						|  | ) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
						
						|  | bs_embed * num_images_per_prompt, -1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder_2 is not None: | 
					
						
						|  | if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder_2, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_image(self, image, prompt, prompt_embeds): | 
					
						
						|  | image_is_pil = isinstance(image, PIL.Image.Image) | 
					
						
						|  | image_is_tensor = isinstance(image, torch.Tensor) | 
					
						
						|  | image_is_np = isinstance(image, np.ndarray) | 
					
						
						|  | image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | 
					
						
						|  | image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | 
					
						
						|  | image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | not image_is_pil | 
					
						
						|  | and not image_is_tensor | 
					
						
						|  | and not image_is_np | 
					
						
						|  | and not image_is_pil_list | 
					
						
						|  | and not image_is_tensor_list | 
					
						
						|  | and not image_is_np_list | 
					
						
						|  | ): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if image_is_pil: | 
					
						
						|  | image_batch_size = 1 | 
					
						
						|  | else: | 
					
						
						|  | image_batch_size = len(image) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | prompt_batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | prompt_batch_size = len(prompt) | 
					
						
						|  | elif prompt_embeds is not None: | 
					
						
						|  | prompt_batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if image_batch_size != 1 and image_batch_size != prompt_batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | negative_prompt_2=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | pooled_prompt_embeds=None, | 
					
						
						|  | negative_pooled_prompt_embeds=None, | 
					
						
						|  | callback_on_step_end_tensor_inputs=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end_tensor_inputs is not None and not all( | 
					
						
						|  | k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt_2 is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  | elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | 
					
						
						|  | raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and pooled_prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def check_conditions( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | adapter_image, | 
					
						
						|  | control_image, | 
					
						
						|  | adapter_conditioning_scale, | 
					
						
						|  | controlnet_conditioning_scale, | 
					
						
						|  | control_guidance_start, | 
					
						
						|  | control_guidance_end, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(control_guidance_start, (tuple, list)): | 
					
						
						|  | control_guidance_start = [control_guidance_start] | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(control_guidance_end, (tuple, list)): | 
					
						
						|  | control_guidance_end = [control_guidance_end] | 
					
						
						|  |  | 
					
						
						|  | if len(control_guidance_start) != len(control_guidance_end): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.controlnet, MultiControlNetModel): | 
					
						
						|  | if len(control_guidance_start) != len(self.controlnet.nets): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for start, end in zip(control_guidance_start, control_guidance_end): | 
					
						
						|  | if start >= end: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | 
					
						
						|  | ) | 
					
						
						|  | if start < 0.0: | 
					
						
						|  | raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | 
					
						
						|  | if end > 1.0: | 
					
						
						|  | raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | 
					
						
						|  | self.controlnet, torch._dynamo.eval_frame.OptimizedModule | 
					
						
						|  | ) | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(self.controlnet, ControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, ControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | self.check_image(control_image, prompt, prompt_embeds) | 
					
						
						|  | elif ( | 
					
						
						|  | isinstance(self.controlnet, MultiControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | if not isinstance(control_image, list): | 
					
						
						|  | raise TypeError("For multiple controlnets: `control_image` must be type `list`") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif any(isinstance(i, list) for i in control_image): | 
					
						
						|  | raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
						
						|  | elif len(control_image) != len(self.controlnet.nets): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(control_image)} images and {len(self.controlnet.nets)} ControlNets." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for image_ in control_image: | 
					
						
						|  | self.check_image(image_, prompt, prompt_embeds) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(self.controlnet, ControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, ControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | if not isinstance(controlnet_conditioning_scale, float): | 
					
						
						|  | raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | 
					
						
						|  | elif ( | 
					
						
						|  | isinstance(self.controlnet, MultiControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(controlnet_conditioning_scale, list): | 
					
						
						|  | if any(isinstance(i, list) for i in controlnet_conditioning_scale): | 
					
						
						|  | raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
						
						|  | elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | 
					
						
						|  | self.controlnet.nets | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | 
					
						
						|  | " the same length as the number of controlnets" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): | 
					
						
						|  | self.check_image(adapter_image, prompt, prompt_embeds) | 
					
						
						|  | elif ( | 
					
						
						|  | isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) | 
					
						
						|  | ): | 
					
						
						|  | if not isinstance(adapter_image, list): | 
					
						
						|  | raise TypeError("For multiple adapters: `adapter_image` must be type `list`") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif any(isinstance(i, list) for i in adapter_image): | 
					
						
						|  | raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
						
						|  | elif len(adapter_image) != len(self.adapter.adapters): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"For multiple adapters: `image` must have the same length as the number of adapters, but got {len(adapter_image)} images and {len(self.adapters.nets)} Adapters." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for image_ in adapter_image: | 
					
						
						|  | self.check_image(image_, prompt, prompt_embeds) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): | 
					
						
						|  | if not isinstance(adapter_conditioning_scale, float): | 
					
						
						|  | raise TypeError("For single adapter: `adapter_conditioning_scale` must be type `float`.") | 
					
						
						|  | elif ( | 
					
						
						|  | isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(adapter_conditioning_scale, list): | 
					
						
						|  | if any(isinstance(i, list) for i in adapter_conditioning_scale): | 
					
						
						|  | raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
						
						|  | elif isinstance(adapter_conditioning_scale, list) and len(adapter_conditioning_scale) != len( | 
					
						
						|  | self.adapter.adapters | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "For multiple adapters: When `adapter_conditioning_scale` is specified as `list`, it must have" | 
					
						
						|  | " the same length as the number of adapters" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
						
						|  | shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_add_time_ids( | 
					
						
						|  | self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None | 
					
						
						|  | ): | 
					
						
						|  | add_time_ids = list(original_size + crops_coords_top_left + target_size) | 
					
						
						|  |  | 
					
						
						|  | passed_add_embed_dim = ( | 
					
						
						|  | self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | 
					
						
						|  | ) | 
					
						
						|  | expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | 
					
						
						|  |  | 
					
						
						|  | if expected_add_embed_dim != passed_add_embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | 
					
						
						|  | return add_time_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def upcast_vae(self): | 
					
						
						|  | dtype = self.vae.dtype | 
					
						
						|  | self.vae.to(dtype=torch.float32) | 
					
						
						|  | use_torch_2_0_or_xformers = isinstance( | 
					
						
						|  | self.vae.decoder.mid_block.attentions[0].processor, | 
					
						
						|  | ( | 
					
						
						|  | AttnProcessor2_0, | 
					
						
						|  | XFormersAttnProcessor, | 
					
						
						|  | LoRAXFormersAttnProcessor, | 
					
						
						|  | LoRAAttnProcessor2_0, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_torch_2_0_or_xformers: | 
					
						
						|  | self.vae.post_quant_conv.to(dtype) | 
					
						
						|  | self.vae.decoder.conv_in.to(dtype) | 
					
						
						|  | self.vae.decoder.mid_block.to(dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _default_height_width(self, height, width, image): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | while isinstance(image, list): | 
					
						
						|  | image = image[0] | 
					
						
						|  |  | 
					
						
						|  | if height is None: | 
					
						
						|  | if isinstance(image, PIL.Image.Image): | 
					
						
						|  | height = image.height | 
					
						
						|  | elif isinstance(image, torch.Tensor): | 
					
						
						|  | height = image.shape[-2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor | 
					
						
						|  |  | 
					
						
						|  | if width is None: | 
					
						
						|  | if isinstance(image, PIL.Image.Image): | 
					
						
						|  | width = image.width | 
					
						
						|  | elif isinstance(image, torch.Tensor): | 
					
						
						|  | width = image.shape[-1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor | 
					
						
						|  |  | 
					
						
						|  | return height, width | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): | 
					
						
						|  | r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. | 
					
						
						|  |  | 
					
						
						|  | The suffixes after the scaling factors represent the stages where they are being applied. | 
					
						
						|  |  | 
					
						
						|  | Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values | 
					
						
						|  | that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | s1 (`float`): | 
					
						
						|  | Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | 
					
						
						|  | mitigate "oversmoothing effect" in the enhanced denoising process. | 
					
						
						|  | s2 (`float`): | 
					
						
						|  | Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | 
					
						
						|  | mitigate "oversmoothing effect" in the enhanced denoising process. | 
					
						
						|  | b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | 
					
						
						|  | b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | 
					
						
						|  | """ | 
					
						
						|  | if not hasattr(self, "unet"): | 
					
						
						|  | raise ValueError("The pipeline must have `unet` for using FreeU.") | 
					
						
						|  | self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def disable_freeu(self): | 
					
						
						|  | """Disables the FreeU mechanism if enabled.""" | 
					
						
						|  | self.unet.disable_freeu() | 
					
						
						|  |  | 
					
						
						|  | def prepare_control_image( | 
					
						
						|  | self, | 
					
						
						|  | image, | 
					
						
						|  | width, | 
					
						
						|  | height, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | device, | 
					
						
						|  | dtype, | 
					
						
						|  | do_classifier_free_guidance=False, | 
					
						
						|  | guess_mode=False, | 
					
						
						|  | ): | 
					
						
						|  | image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | 
					
						
						|  | image_batch_size = image.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if image_batch_size == 1: | 
					
						
						|  | repeat_by = batch_size | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | repeat_by = num_images_per_prompt | 
					
						
						|  |  | 
					
						
						|  | image = image.repeat_interleave(repeat_by, dim=0) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and not guess_mode: | 
					
						
						|  | image = torch.cat([image] * 2) | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | prompt_2: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | adapter_image: PipelineImageInput = None, | 
					
						
						|  | control_image: PipelineImageInput = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | denoising_end: Optional[float] = None, | 
					
						
						|  | guidance_scale: float = 5.0, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | negative_prompt_2: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | guidance_rescale: float = 0.0, | 
					
						
						|  | original_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | crops_coords_top_left: Tuple[int, int] = (0, 0), | 
					
						
						|  | target_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | negative_original_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | 
					
						
						|  | negative_target_size: Optional[Tuple[int, int]] = None, | 
					
						
						|  | adapter_conditioning_scale: Union[float, List[float]] = 1.0, | 
					
						
						|  | adapter_conditioning_factor: float = 1.0, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | controlnet_conditioning_scale=1.0, | 
					
						
						|  | guess_mode: bool = False, | 
					
						
						|  | control_guidance_start: float = 0.0, | 
					
						
						|  | control_guidance_end: float = 1.0, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
						
						|  | instead. | 
					
						
						|  | prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | used in both text-encoders | 
					
						
						|  | adapter_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`): | 
					
						
						|  | The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the | 
					
						
						|  | type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be | 
					
						
						|  | accepted as an image. The control image is automatically resized to fit the output image. | 
					
						
						|  | control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | 
					
						
						|  | `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | 
					
						
						|  | The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | 
					
						
						|  | specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | 
					
						
						|  | accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | 
					
						
						|  | and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | 
					
						
						|  | `init`, images must be passed as a list such that each element of the list can be correctly batched for | 
					
						
						|  | input to a single ControlNet. | 
					
						
						|  | height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The height in pixels of the generated image. Anything below 512 pixels won't work well for | 
					
						
						|  | [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | 
					
						
						|  | and checkpoints that are not specifically fine-tuned on low resolutions. | 
					
						
						|  | width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The width in pixels of the generated image. Anything below 512 pixels won't work well for | 
					
						
						|  | [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | 
					
						
						|  | and checkpoints that are not specifically fine-tuned on low resolutions. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | denoising_end (`float`, *optional*): | 
					
						
						|  | When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | 
					
						
						|  | completed before it is intentionally prematurely terminated. As a result, the returned sample will | 
					
						
						|  | still retain a substantial amount of noise as determined by the discrete timesteps selected by the | 
					
						
						|  | scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | 
					
						
						|  | "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | 
					
						
						|  | Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 5.0): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
						
						|  | `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
						
						|  | input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionAdapterPipelineOutput`] | 
					
						
						|  | instead of a plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that will be called every `callback_steps` steps during inference. The function will be | 
					
						
						|  | called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
						
						|  | called at every step. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | guidance_rescale (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | 
					
						
						|  | Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | 
					
						
						|  | [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | 
					
						
						|  | Guidance rescale factor should fix overexposure when using zero terminal SNR. | 
					
						
						|  | original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | 
					
						
						|  | `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | 
					
						
						|  | explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | 
					
						
						|  | `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | 
					
						
						|  | `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | 
					
						
						|  | `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | For most cases, `target_size` should be set to the desired height and width of the generated image. If | 
					
						
						|  | not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | 
					
						
						|  | section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
						
						|  | negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | To negatively condition the generation process based on a specific image resolution. Part of SDXL's | 
					
						
						|  | micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | 
					
						
						|  | information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | 
					
						
						|  | negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | 
					
						
						|  | To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | 
					
						
						|  | micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | 
					
						
						|  | information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | 
					
						
						|  | negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
						
						|  | To negatively condition the generation process based on a target image resolution. It should be as same | 
					
						
						|  | as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
						
						|  | [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | 
					
						
						|  | information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | 
					
						
						|  | controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | 
					
						
						|  | The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the | 
					
						
						|  | residual in the original unet. If multiple adapters are specified in init, you can set the | 
					
						
						|  | corresponding scale as a list. | 
					
						
						|  | adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | 
					
						
						|  | The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the | 
					
						
						|  | residual in the original unet. If multiple adapters are specified in init, you can set the | 
					
						
						|  | corresponding scale as a list. | 
					
						
						|  | adapter_conditioning_factor (`float`, *optional*, defaults to 1.0): | 
					
						
						|  | The fraction of timesteps for which adapter should be applied. If `adapter_conditioning_factor` is | 
					
						
						|  | `0.0`, adapter is not applied at all. If `adapter_conditioning_factor` is `1.0`, adapter is applied for | 
					
						
						|  | all timesteps. If `adapter_conditioning_factor` is `0.5`, adapter is applied for half of the timesteps. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a | 
					
						
						|  | `tuple`. When returning a tuple, the first element is a list with the generated images. | 
					
						
						|  | """ | 
					
						
						|  | controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | 
					
						
						|  | adapter = self.adapter._orig_mod if is_compiled_module(self.adapter) else self.adapter | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | height, width = self._default_height_width(height, width, adapter_image) | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  | if isinstance(adapter, MultiAdapter): | 
					
						
						|  | adapter_input = [] | 
					
						
						|  |  | 
					
						
						|  | for one_image in adapter_image: | 
					
						
						|  | one_image = _preprocess_adapter_image(one_image, height, width) | 
					
						
						|  | one_image = one_image.to(device=device, dtype=adapter.dtype) | 
					
						
						|  | adapter_input.append(one_image) | 
					
						
						|  | else: | 
					
						
						|  | adapter_input = _preprocess_adapter_image(adapter_image, height, width) | 
					
						
						|  | adapter_input = adapter_input.to(device=device, dtype=adapter.dtype) | 
					
						
						|  | original_size = original_size or (height, width) | 
					
						
						|  | target_size = target_size or (height, width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | 
					
						
						|  | control_guidance_start = len(control_guidance_end) * [control_guidance_start] | 
					
						
						|  | elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | 
					
						
						|  | control_guidance_end = len(control_guidance_start) * [control_guidance_end] | 
					
						
						|  | elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | 
					
						
						|  | mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | 
					
						
						|  | control_guidance_start, control_guidance_end = ( | 
					
						
						|  | mult * [control_guidance_start], | 
					
						
						|  | mult * [control_guidance_end], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | 
					
						
						|  | controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | 
					
						
						|  | if isinstance(adapter, MultiAdapter) and isinstance(adapter_conditioning_scale, float): | 
					
						
						|  | adapter_conditioning_scale = [adapter_conditioning_scale] * len(adapter.adapters) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | negative_prompt_2=negative_prompt_2, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.check_conditions( | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | adapter_image, | 
					
						
						|  | control_image, | 
					
						
						|  | adapter_conditioning_scale, | 
					
						
						|  | controlnet_conditioning_scale, | 
					
						
						|  | control_guidance_start, | 
					
						
						|  | control_guidance_end, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds, | 
					
						
						|  | ) = self.encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | prompt_2=prompt_2, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | negative_prompt_2=negative_prompt_2, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | 
					
						
						|  | clip_skip=clip_skip, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  |  | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(adapter, MultiAdapter): | 
					
						
						|  | adapter_state = adapter(adapter_input, adapter_conditioning_scale) | 
					
						
						|  | for k, v in enumerate(adapter_state): | 
					
						
						|  | adapter_state[k] = v | 
					
						
						|  | else: | 
					
						
						|  | adapter_state = adapter(adapter_input) | 
					
						
						|  | for k, v in enumerate(adapter_state): | 
					
						
						|  | adapter_state[k] = v * adapter_conditioning_scale | 
					
						
						|  | if num_images_per_prompt > 1: | 
					
						
						|  | for k, v in enumerate(adapter_state): | 
					
						
						|  | adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | for k, v in enumerate(adapter_state): | 
					
						
						|  | adapter_state[k] = torch.cat([v] * 2, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet, ControlNetModel): | 
					
						
						|  | control_image = self.prepare_control_image( | 
					
						
						|  | image=control_image, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | batch_size=batch_size * num_images_per_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=controlnet.dtype, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | guess_mode=guess_mode, | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(controlnet, MultiControlNetModel): | 
					
						
						|  | control_images = [] | 
					
						
						|  |  | 
					
						
						|  | for control_image_ in control_image: | 
					
						
						|  | control_image_ = self.prepare_control_image( | 
					
						
						|  | image=control_image_, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | batch_size=batch_size * num_images_per_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=controlnet.dtype, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | guess_mode=guess_mode, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | control_images.append(control_image_) | 
					
						
						|  |  | 
					
						
						|  | control_image = control_images | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"{controlnet.__class__} is not supported.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | controlnet_keep = [] | 
					
						
						|  | for i in range(len(timesteps)): | 
					
						
						|  | keeps = [ | 
					
						
						|  | 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | 
					
						
						|  | for s, e in zip(control_guidance_start, control_guidance_end) | 
					
						
						|  | ] | 
					
						
						|  | if isinstance(self.controlnet, MultiControlNetModel): | 
					
						
						|  | controlnet_keep.append(keeps) | 
					
						
						|  | else: | 
					
						
						|  | controlnet_keep.append(keeps[0]) | 
					
						
						|  |  | 
					
						
						|  | add_text_embeds = pooled_prompt_embeds | 
					
						
						|  | if self.text_encoder_2 is None: | 
					
						
						|  | text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | 
					
						
						|  | else: | 
					
						
						|  | text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | 
					
						
						|  |  | 
					
						
						|  | add_time_ids = self._get_add_time_ids( | 
					
						
						|  | original_size, | 
					
						
						|  | crops_coords_top_left, | 
					
						
						|  | target_size, | 
					
						
						|  | dtype=prompt_embeds.dtype, | 
					
						
						|  | text_encoder_projection_dim=text_encoder_projection_dim, | 
					
						
						|  | ) | 
					
						
						|  | if negative_original_size is not None and negative_target_size is not None: | 
					
						
						|  | negative_add_time_ids = self._get_add_time_ids( | 
					
						
						|  | negative_original_size, | 
					
						
						|  | negative_crops_coords_top_left, | 
					
						
						|  | negative_target_size, | 
					
						
						|  | dtype=prompt_embeds.dtype, | 
					
						
						|  | text_encoder_projection_dim=text_encoder_projection_dim, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | negative_add_time_ids = add_time_ids | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | 
					
						
						|  | add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | 
					
						
						|  | add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(device) | 
					
						
						|  | add_text_embeds = add_text_embeds.to(device) | 
					
						
						|  | add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: | 
					
						
						|  | discrete_timestep_cutoff = int( | 
					
						
						|  | round( | 
					
						
						|  | self.scheduler.config.num_train_timesteps | 
					
						
						|  | - (denoising_end * self.scheduler.config.num_train_timesteps) | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | 
					
						
						|  | timesteps = timesteps[:num_inference_steps] | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | 
					
						
						|  |  | 
					
						
						|  | if i < int(num_inference_steps * adapter_conditioning_factor): | 
					
						
						|  | down_intrablock_additional_residuals = [state.clone() for state in adapter_state] | 
					
						
						|  | else: | 
					
						
						|  | down_intrablock_additional_residuals = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latent_model_input_controlnet = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latent_model_input_controlnet = self.scheduler.scale_model_input(latent_model_input_controlnet, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if guess_mode and do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | control_model_input = latents | 
					
						
						|  | control_model_input = self.scheduler.scale_model_input(control_model_input, t) | 
					
						
						|  | controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | 
					
						
						|  | controlnet_added_cond_kwargs = { | 
					
						
						|  | "text_embeds": add_text_embeds.chunk(2)[1], | 
					
						
						|  | "time_ids": add_time_ids.chunk(2)[1], | 
					
						
						|  | } | 
					
						
						|  | else: | 
					
						
						|  | control_model_input = latent_model_input_controlnet | 
					
						
						|  | controlnet_prompt_embeds = prompt_embeds | 
					
						
						|  | controlnet_added_cond_kwargs = added_cond_kwargs | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet_keep[i], list): | 
					
						
						|  | cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | 
					
						
						|  | else: | 
					
						
						|  | controlnet_cond_scale = controlnet_conditioning_scale | 
					
						
						|  | if isinstance(controlnet_cond_scale, list): | 
					
						
						|  | controlnet_cond_scale = controlnet_cond_scale[0] | 
					
						
						|  | cond_scale = controlnet_cond_scale * controlnet_keep[i] | 
					
						
						|  | down_block_res_samples, mid_block_res_sample = self.controlnet( | 
					
						
						|  | control_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=controlnet_prompt_embeds, | 
					
						
						|  | controlnet_cond=control_image, | 
					
						
						|  | conditioning_scale=cond_scale, | 
					
						
						|  | guess_mode=guess_mode, | 
					
						
						|  | added_cond_kwargs=controlnet_added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | down_intrablock_additional_residuals=down_intrablock_additional_residuals, | 
					
						
						|  | down_block_additional_residuals=down_block_res_samples, | 
					
						
						|  | mid_block_additional_residual=mid_block_res_sample, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and guidance_rescale > 0.0: | 
					
						
						|  |  | 
					
						
						|  | noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | step_idx = i // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, latents) | 
					
						
						|  |  | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  |  | 
					
						
						|  | needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.upcast_vae() | 
					
						
						|  | latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | 
					
						
						|  |  | 
					
						
						|  | image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if needs_upcasting: | 
					
						
						|  | self.vae.to(dtype=torch.float16) | 
					
						
						|  | else: | 
					
						
						|  | image = latents | 
					
						
						|  | return StableDiffusionXLPipelineOutput(images=image) | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image,) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionXLPipelineOutput(images=image) | 
					
						
						|  |  |