|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | from types import FunctionType | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | 
					
						
						|  |  | 
					
						
						|  | from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | 
					
						
						|  | from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel | 
					
						
						|  | from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
						
						|  | from diffusers.models.unet_motion_model import MotionAdapter | 
					
						
						|  | from diffusers.pipelines.animatediff.pipeline_output import AnimateDiffPipelineOutput | 
					
						
						|  | from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | 
					
						
						|  | from diffusers.schedulers import ( | 
					
						
						|  | DDIMScheduler, | 
					
						
						|  | DPMSolverMultistepScheduler, | 
					
						
						|  | EulerAncestralDiscreteScheduler, | 
					
						
						|  | EulerDiscreteScheduler, | 
					
						
						|  | LMSDiscreteScheduler, | 
					
						
						|  | PNDMScheduler, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler | 
					
						
						|  | >>> from diffusers.utils import export_to_gif, load_image | 
					
						
						|  |  | 
					
						
						|  | >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE" | 
					
						
						|  | >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") | 
					
						
						|  | >>> pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda") | 
					
						
						|  | >>> pipe.scheduler = pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1) | 
					
						
						|  |  | 
					
						
						|  | >>> image = load_image("snail.png") | 
					
						
						|  | >>> output = pipe(image=image, prompt="A snail moving on the ground", strength=0.8, latent_interpolation_method="slerp") | 
					
						
						|  | >>> frames = output.frames[0] | 
					
						
						|  | >>> export_to_gif(frames, "animation.gif") | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def lerp( | 
					
						
						|  | v0: torch.Tensor, | 
					
						
						|  | v1: torch.Tensor, | 
					
						
						|  | t: Union[float, torch.Tensor], | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | r""" | 
					
						
						|  | Linear Interpolation between two tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | v0 (`torch.Tensor`): First tensor. | 
					
						
						|  | v1 (`torch.Tensor`): Second tensor. | 
					
						
						|  | t: (`float` or `torch.Tensor`): Interpolation factor. | 
					
						
						|  | """ | 
					
						
						|  | t_is_float = False | 
					
						
						|  | input_device = v0.device | 
					
						
						|  | v0 = v0.cpu().numpy() | 
					
						
						|  | v1 = v1.cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(t, torch.Tensor): | 
					
						
						|  | t = t.cpu().numpy() | 
					
						
						|  | else: | 
					
						
						|  | t_is_float = True | 
					
						
						|  | t = np.array([t], dtype=v0.dtype) | 
					
						
						|  |  | 
					
						
						|  | t = t[..., None] | 
					
						
						|  | v0 = v0[None, ...] | 
					
						
						|  | v1 = v1[None, ...] | 
					
						
						|  | v2 = (1 - t) * v0 + t * v1 | 
					
						
						|  |  | 
					
						
						|  | if t_is_float and v0.ndim > 1: | 
					
						
						|  | assert v2.shape[0] == 1 | 
					
						
						|  | v2 = np.squeeze(v2, axis=0) | 
					
						
						|  |  | 
					
						
						|  | v2 = torch.from_numpy(v2).to(input_device) | 
					
						
						|  | return v2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def slerp( | 
					
						
						|  | v0: torch.Tensor, | 
					
						
						|  | v1: torch.Tensor, | 
					
						
						|  | t: Union[float, torch.Tensor], | 
					
						
						|  | DOT_THRESHOLD: float = 0.9995, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | r""" | 
					
						
						|  | Spherical Linear Interpolation between two tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | v0 (`torch.Tensor`): First tensor. | 
					
						
						|  | v1 (`torch.Tensor`): Second tensor. | 
					
						
						|  | t: (`float` or `torch.Tensor`): Interpolation factor. | 
					
						
						|  | DOT_THRESHOLD (`float`): | 
					
						
						|  | Dot product threshold exceeding which linear interpolation will be used | 
					
						
						|  | because input tensors are close to parallel. | 
					
						
						|  | """ | 
					
						
						|  | t_is_float = False | 
					
						
						|  | input_device = v0.device | 
					
						
						|  | v0 = v0.cpu().numpy() | 
					
						
						|  | v1 = v1.cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(t, torch.Tensor): | 
					
						
						|  | t = t.cpu().numpy() | 
					
						
						|  | else: | 
					
						
						|  | t_is_float = True | 
					
						
						|  | t = np.array([t], dtype=v0.dtype) | 
					
						
						|  |  | 
					
						
						|  | dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) | 
					
						
						|  |  | 
					
						
						|  | if np.abs(dot) > DOT_THRESHOLD: | 
					
						
						|  |  | 
					
						
						|  | v2 = lerp(v0, v1, t) | 
					
						
						|  | else: | 
					
						
						|  | theta_0 = np.arccos(dot) | 
					
						
						|  | sin_theta_0 = np.sin(theta_0) | 
					
						
						|  | theta_t = theta_0 * t | 
					
						
						|  | sin_theta_t = np.sin(theta_t) | 
					
						
						|  | s0 = np.sin(theta_0 - theta_t) / sin_theta_0 | 
					
						
						|  | s1 = sin_theta_t / sin_theta_0 | 
					
						
						|  | s0 = s0[..., None] | 
					
						
						|  | s1 = s1[..., None] | 
					
						
						|  | v0 = v0[None, ...] | 
					
						
						|  | v1 = v1[None, ...] | 
					
						
						|  | v2 = s0 * v0 + s1 * v1 | 
					
						
						|  |  | 
					
						
						|  | if t_is_float and v0.ndim > 1: | 
					
						
						|  | assert v2.shape[0] == 1 | 
					
						
						|  | v2 = np.squeeze(v2, axis=0) | 
					
						
						|  |  | 
					
						
						|  | v2 = torch.from_numpy(v2).to(input_device) | 
					
						
						|  | return v2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def tensor2vid(video: torch.Tensor, processor, output_type="np"): | 
					
						
						|  | batch_size, channels, num_frames, height, width = video.shape | 
					
						
						|  | outputs = [] | 
					
						
						|  | for batch_idx in range(batch_size): | 
					
						
						|  | batch_vid = video[batch_idx].permute(1, 0, 2, 3) | 
					
						
						|  | batch_output = processor.postprocess(batch_vid, output_type) | 
					
						
						|  |  | 
					
						
						|  | outputs.append(batch_output) | 
					
						
						|  |  | 
					
						
						|  | if output_type == "np": | 
					
						
						|  | outputs = np.stack(outputs) | 
					
						
						|  |  | 
					
						
						|  | elif output_type == "pt": | 
					
						
						|  | outputs = torch.stack(outputs) | 
					
						
						|  |  | 
					
						
						|  | elif not output_type == "pil": | 
					
						
						|  | raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_latents( | 
					
						
						|  | encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | 
					
						
						|  | ): | 
					
						
						|  | if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | 
					
						
						|  | return encoder_output.latent_dist.sample(generator) | 
					
						
						|  | elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | 
					
						
						|  | return encoder_output.latent_dist.mode() | 
					
						
						|  | elif hasattr(encoder_output, "latents"): | 
					
						
						|  | return encoder_output.latents | 
					
						
						|  | else: | 
					
						
						|  | raise AttributeError("Could not access latents of provided encoder_output") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_timesteps( | 
					
						
						|  | scheduler, | 
					
						
						|  | num_inference_steps: Optional[int] = None, | 
					
						
						|  | device: Optional[Union[str, torch.device]] = None, | 
					
						
						|  | timesteps: Optional[List[int]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | 
					
						
						|  | custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | scheduler (`SchedulerMixin`): | 
					
						
						|  | The scheduler to get timesteps from. | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | The number of diffusion steps used when generating samples with a pre-trained model. If used, | 
					
						
						|  | `timesteps` must be `None`. | 
					
						
						|  | device (`str` or `torch.device`, *optional*): | 
					
						
						|  | The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
						
						|  | timesteps (`List[int]`, *optional*): | 
					
						
						|  | Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | 
					
						
						|  | timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | 
					
						
						|  | must be `None`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | 
					
						
						|  | second element is the number of inference steps. | 
					
						
						|  | """ | 
					
						
						|  | if timesteps is not None: | 
					
						
						|  | accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
						
						|  | if not accepts_timesteps: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
						
						|  | f" timestep schedules. Please check whether you are using the correct scheduler." | 
					
						
						|  | ) | 
					
						
						|  | scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | else: | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | return timesteps, num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AnimateDiffImgToVideoPipeline( | 
					
						
						|  | DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for image-to-video generation. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | 
					
						
						|  | implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 
					
						
						|  |  | 
					
						
						|  | The pipeline also inherits the following loading methods: | 
					
						
						|  | - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | 
					
						
						|  | - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | 
					
						
						|  | - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | 
					
						
						|  | - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | A [`~transformers.CLIPTokenizer`] to tokenize text. | 
					
						
						|  | unet ([`UNet2DConditionModel`]): | 
					
						
						|  | A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. | 
					
						
						|  | motion_adapter ([`MotionAdapter`]): | 
					
						
						|  | A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | 
					
						
						|  | _optional_components = ["feature_extractor", "image_encoder"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | motion_adapter: MotionAdapter, | 
					
						
						|  | scheduler: Union[ | 
					
						
						|  | DDIMScheduler, | 
					
						
						|  | PNDMScheduler, | 
					
						
						|  | LMSDiscreteScheduler, | 
					
						
						|  | EulerDiscreteScheduler, | 
					
						
						|  | EulerAncestralDiscreteScheduler, | 
					
						
						|  | DPMSolverMultistepScheduler, | 
					
						
						|  | ], | 
					
						
						|  | feature_extractor: CLIPImageProcessor = None, | 
					
						
						|  | image_encoder: CLIPVisionModelWithProjection = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | unet = UNetMotionModel.from_unet2d(unet, motion_adapter) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | motion_adapter=motion_adapter, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | image_encoder=image_encoder, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, LoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | scale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | if clip_skip is None: | 
					
						
						|  | prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | prompt_embeds_dtype = self.text_encoder.dtype | 
					
						
						|  | elif self.unet is not None: | 
					
						
						|  | prompt_embeds_dtype = self.unet.dtype | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds_dtype = prompt_embeds.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | 
					
						
						|  | dtype = next(self.image_encoder.parameters()).dtype | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(image, torch.Tensor): | 
					
						
						|  | image = self.feature_extractor(image, return_tensors="pt").pixel_values | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | 
					
						
						|  | image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | uncond_image_enc_hidden_states = self.image_encoder( | 
					
						
						|  | torch.zeros_like(image), output_hidden_states=True | 
					
						
						|  | ).hidden_states[-2] | 
					
						
						|  | uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | 
					
						
						|  | num_images_per_prompt, dim=0 | 
					
						
						|  | ) | 
					
						
						|  | return image_enc_hidden_states, uncond_image_enc_hidden_states | 
					
						
						|  | else: | 
					
						
						|  | image_embeds = self.image_encoder(image).image_embeds | 
					
						
						|  | image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | uncond_image_embeds = torch.zeros_like(image_embeds) | 
					
						
						|  |  | 
					
						
						|  | return image_embeds, uncond_image_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_ip_adapter_image_embeds( | 
					
						
						|  | self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | 
					
						
						|  | ): | 
					
						
						|  | if ip_adapter_image_embeds is None: | 
					
						
						|  | if not isinstance(ip_adapter_image, list): | 
					
						
						|  | ip_adapter_image = [ip_adapter_image] | 
					
						
						|  |  | 
					
						
						|  | if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_embeds = [] | 
					
						
						|  | for single_ip_adapter_image, image_proj_layer in zip( | 
					
						
						|  | ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | 
					
						
						|  | ): | 
					
						
						|  | output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | 
					
						
						|  | single_image_embeds, single_negative_image_embeds = self.encode_image( | 
					
						
						|  | single_ip_adapter_image, device, 1, output_hidden_state | 
					
						
						|  | ) | 
					
						
						|  | single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | 
					
						
						|  | single_negative_image_embeds = torch.stack( | 
					
						
						|  | [single_negative_image_embeds] * num_images_per_prompt, dim=0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance: | 
					
						
						|  | single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | 
					
						
						|  | single_image_embeds = single_image_embeds.to(device) | 
					
						
						|  |  | 
					
						
						|  | image_embeds.append(single_image_embeds) | 
					
						
						|  | else: | 
					
						
						|  | image_embeds = ip_adapter_image_embeds | 
					
						
						|  | return image_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents): | 
					
						
						|  | latents = 1 / self.vae.config.scaling_factor * latents | 
					
						
						|  |  | 
					
						
						|  | batch_size, channels, num_frames, height, width = latents.shape | 
					
						
						|  | latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) | 
					
						
						|  |  | 
					
						
						|  | image = self.vae.decode(latents).sample | 
					
						
						|  | video = ( | 
					
						
						|  | image[None, :] | 
					
						
						|  | .reshape( | 
					
						
						|  | ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_frames, | 
					
						
						|  | -1, | 
					
						
						|  | ) | 
					
						
						|  | + image.shape[2:] | 
					
						
						|  | ) | 
					
						
						|  | .permute(0, 2, 1, 3, 4) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | video = video.float() | 
					
						
						|  | return video | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | callback_on_step_end_tensor_inputs=None, | 
					
						
						|  | latent_interpolation_method=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  | if callback_on_step_end_tensor_inputs is not None and not all( | 
					
						
						|  | k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latent_interpolation_method is not None: | 
					
						
						|  | if latent_interpolation_method not in ["lerp", "slerp"] and not isinstance( | 
					
						
						|  | latent_interpolation_method, FunctionType | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`latent_interpolation_method` must be one of `lerp`, `slerp` or a Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents( | 
					
						
						|  | self, | 
					
						
						|  | image, | 
					
						
						|  | strength, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | num_frames, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents=None, | 
					
						
						|  | latent_interpolation_method="slerp", | 
					
						
						|  | ): | 
					
						
						|  | shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | num_frames, | 
					
						
						|  | height // self.vae_scale_factor, | 
					
						
						|  | width // self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | if image.shape[1] == 4: | 
					
						
						|  | latents = image | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if self.vae.config.force_upcast: | 
					
						
						|  | image = image.float() | 
					
						
						|  | self.vae.to(dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(generator, list): | 
					
						
						|  | if len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | init_latents = [ | 
					
						
						|  | retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | 
					
						
						|  | for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | init_latents = torch.cat(init_latents, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | 
					
						
						|  |  | 
					
						
						|  | if self.vae.config.force_upcast: | 
					
						
						|  | self.vae.to(dtype) | 
					
						
						|  |  | 
					
						
						|  | init_latents = init_latents.to(dtype) | 
					
						
						|  | init_latents = self.vae.config.scaling_factor * init_latents | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  |  | 
					
						
						|  | if latent_interpolation_method == "lerp": | 
					
						
						|  |  | 
					
						
						|  | def latent_cls(v0, v1, index): | 
					
						
						|  | return lerp(v0, v1, index / num_frames * (1 - strength)) | 
					
						
						|  | elif latent_interpolation_method == "slerp": | 
					
						
						|  |  | 
					
						
						|  | def latent_cls(v0, v1, index): | 
					
						
						|  | return slerp(v0, v1, index / num_frames * (1 - strength)) | 
					
						
						|  | else: | 
					
						
						|  | latent_cls = latent_interpolation_method | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_frames): | 
					
						
						|  | latents[:, :, i, :, :] = latent_cls(latents[:, :, i, :, :], init_latents, i) | 
					
						
						|  | else: | 
					
						
						|  | if shape != latents.shape: | 
					
						
						|  |  | 
					
						
						|  | raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}") | 
					
						
						|  | latents = latents.to(device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | image: PipelineImageInput, | 
					
						
						|  | prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_frames: int = 16, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | timesteps: Optional[List[int]] = None, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | strength: float = 0.8, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_videos_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ip_adapter_image: Optional[PipelineImageInput] = None, | 
					
						
						|  | ip_adapter_image_embeds: Optional[PipelineImageInput] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: Optional[int] = 1, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | latent_interpolation_method: Union[str, Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]] = "slerp", | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | The call function to the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image (`PipelineImageInput`): | 
					
						
						|  | The input image to condition the generation on. | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | 
					
						
						|  | height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The height in pixels of the generated video. | 
					
						
						|  | width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The width in pixels of the generated video. | 
					
						
						|  | num_frames (`int`, *optional*, defaults to 16): | 
					
						
						|  | The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | 
					
						
						|  | amounts to 2 seconds of video. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | strength (`float`, *optional*, defaults to 0.8): | 
					
						
						|  | Higher strength leads to more differences between original image and generated video. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
						
						|  | `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide what to not include in image generation. If not defined, you need to | 
					
						
						|  | pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | 
					
						
						|  | to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | 
					
						
						|  | generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | 
					
						
						|  | `(batch_size, num_channel, num_frames, height, width)`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | 
					
						
						|  | provided, text embeddings are generated from the `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | 
					
						
						|  | not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | 
					
						
						|  | ip_adapter_image: (`PipelineImageInput`, *optional*): | 
					
						
						|  | Optional image input to work with IP Adapters. | 
					
						
						|  | ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): | 
					
						
						|  | Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | 
					
						
						|  | Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | 
					
						
						|  | if `do_classifier_free_guidance` is set to `True`. | 
					
						
						|  | If not provided, embeddings are computed from the `ip_adapter_image` input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or | 
					
						
						|  | `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`AnimateDiffImgToVideoPipelineOutput`] instead | 
					
						
						|  | of a plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that calls every `callback_steps` steps during inference. The function is called with the | 
					
						
						|  | following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function is called. If not specified, the callback is called at | 
					
						
						|  | every step. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | 
					
						
						|  | [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | latent_interpolation_method (`str` or `Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]]`, *optional*): | 
					
						
						|  | Must be one of "lerp", "slerp" or a callable that takes in a random noisy latent, image latent and a frame index | 
					
						
						|  | as input and returns an initial latent for sampling. | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: | 
					
						
						|  | If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is | 
					
						
						|  | returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  | num_videos_per_prompt = 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | height=height, | 
					
						
						|  | width=width, | 
					
						
						|  | callback_steps=callback_steps, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | latent_interpolation_method=latent_interpolation_method, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_encoder_lora_scale = ( | 
					
						
						|  | cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds, negative_prompt_embeds = self.encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_videos_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | lora_scale=text_encoder_lora_scale, | 
					
						
						|  | clip_skip=clip_skip, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | if ip_adapter_image is not None: | 
					
						
						|  | image_embeds = self.prepare_ip_adapter_image_embeds( | 
					
						
						|  | ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.preprocess(image, height=height, width=width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | image=image, | 
					
						
						|  | strength=strength, | 
					
						
						|  | batch_size=batch_size * num_videos_per_prompt, | 
					
						
						|  | num_channels_latents=num_channels_latents, | 
					
						
						|  | num_frames=num_frames, | 
					
						
						|  | height=height, | 
					
						
						|  | width=width, | 
					
						
						|  | dtype=prompt_embeds.dtype, | 
					
						
						|  | device=device, | 
					
						
						|  | generator=generator, | 
					
						
						|  | latents=latents, | 
					
						
						|  | latent_interpolation_method=latent_interpolation_method, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = ( | 
					
						
						|  | {"image_embeds": image_embeds} | 
					
						
						|  | if ip_adapter_image is not None or ip_adapter_image_embeds is not None | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | ).sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | callback(i, t, latents) | 
					
						
						|  |  | 
					
						
						|  | if output_type == "latent": | 
					
						
						|  | return AnimateDiffPipelineOutput(frames=latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_type == "latent": | 
					
						
						|  | video = latents | 
					
						
						|  | else: | 
					
						
						|  | video_tensor = self.decode_latents(latents) | 
					
						
						|  | video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (video,) | 
					
						
						|  |  | 
					
						
						|  | return AnimateDiffPipelineOutput(frames=video) | 
					
						
						|  |  |