# ============================================== # Stephen Model Fine-Tuning Script (LoRA + PEFT) # Clean + Debug-Enhanced for Grad & Deprecation Warnings # ============================================== !pip install -q "transformers>=4.44.0" "datasets" "peft>=0.12.0" accelerate bitsandbytes sentencepiece huggingface_hub import os from datetime import datetime from huggingface_hub import login, whoami from datasets import load_dataset from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling, BitsAndBytesConfig ) from peft import LoraConfig, get_peft_model from peft import prepare_model_for_kbit_training import torch # ============================================== # Logging helper # ============================================== def log(msg): print(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}") # ============================================== # 1. Hugging Face Login # ============================================== HF_TOKEN = os.getenv("HF_TOKEN") if not HF_TOKEN: raise ValueError("❌ HF_TOKEN environment variable not set.") log("Logging into Hugging Face...") login(token=HF_TOKEN, add_to_git_credential=True) log(f"Logged in as: {whoami()['name']} ✅") # ============================================== # 2. Load Dataset # ============================================== dataset_name = "dgtalbug/stephen-dataset" # CHANGE THIS data_file = "stephen.jsonl" # CHANGE THIS log(f"Loading dataset: {dataset_name}/{data_file} ...") dataset = load_dataset(dataset_name, data_files=data_file, split="train") log(f"Dataset loaded — {len(dataset)} rows") log(f"First example: {dataset[0]}") # ============================================== # 3. Load Base Model & Tokenizer # ============================================== base_model = "dgtalbug/stable-code-instruct-3b" # CHANGE THIS log(f"Loading base model: {base_model}...") tokenizer = AutoTokenizer.from_pretrained( base_model, token=HF_TOKEN, use_fast=True ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # ✅ Quantization config bnb_config = BitsAndBytesConfig( load_in_8bit=True, llm_int8_threshold=6.0 ) try: model = AutoModelForCausalLM.from_pretrained( base_model, token=HF_TOKEN, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True, return_dict=True, quantization_config=bnb_config ) except Exception as e: log(f"⚠️ Quantized load failed: {e} — falling back to fp16.") model = AutoModelForCausalLM.from_pretrained( base_model, token=HF_TOKEN, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True, return_dict=True ) log("Base model loaded ✅") # ============================================== # 4. LoRA Config # ============================================== # log("Configuring LoRA...") # lora_config = LoraConfig( # r=16, # lora_alpha=32, # target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # lora_dropout=0.05, # bias="none", # task_type="CAUSAL_LM" # ) # model = get_peft_model(model, lora_config) # # ✅ Ensure LoRA params require grad # for name, param in model.named_parameters(): # if "lora" in name: # param.requires_grad = True # else: # param.requires_grad = False # # ✅ Sanity check: see how many params are trainable # model.print_trainable_parameters() # log("LoRA config applied ✅") log("Configuring LoRA...") # First, prepare for 8-bit training (important for bitsandbytes) model = prepare_model_for_kbit_training(model) # LoRA config lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # adjust if needed lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) # Apply LoRA model = get_peft_model(model, lora_config) # Double-check trainable params trainable_params = [] for name, param in model.named_parameters(): if param.requires_grad: trainable_params.append(name) if not trainable_params: raise RuntimeError("❌ No parameters set to require gradients! LoRA not applied correctly.") log(f"✅ Found {len(trainable_params)} trainable parameters.") log(f"First 20 trainable params: {trainable_params[:20]}") # Print PEFT/LoRA summary model.print_trainable_parameters() # ============================================== # 5. Tokenize Dataset # ============================================== log("Tokenizing dataset...") first_row = dataset[0] if "text" in first_row: text_key = "text" elif "prompt" in first_row: text_key = "prompt" else: text_key = list(first_row.keys())[0] log(f"Using text key: '{text_key}'") def tokenize_fn(example): tokenized = tokenizer(example[text_key], truncation=True, padding="max_length", max_length=512) tokenized["labels"] = tokenized["input_ids"].copy() # ✅ Ensure labels exist for grad return tokenized tokenized_dataset = dataset.map(tokenize_fn, batched=True, remove_columns=dataset.column_names) log("Tokenization complete ✅") log(f"Tokenized sample: {tokenized_dataset[0]}") # ============================================== # 6. Data Collator # ============================================== data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) # ============================================== # 7. Training Arguments # ============================================== output_dir = "./stephen-lora" log("Preparing training arguments...") training_args = TrainingArguments( output_dir=output_dir, overwrite_output_dir=True, per_device_train_batch_size=8, gradient_accumulation_steps=2, gradient_checkpointing=True, warmup_steps=50, num_train_epochs=3, max_steps=-1, learning_rate=1e-4, lr_scheduler_type="cosine", fp16=True, optim="adamw_torch", logging_dir="./logs", logging_steps=20, save_strategy="epoch", save_total_limit=2, push_to_hub=True, hub_strategy="end", ddp_find_unused_parameters=False, label_names=["labels"] ) log("Training arguments ready ✅") # ============================================== # 8. Debugging Helper Hooks # ============================================== def debug_batch(batch): log(f"🔍 Debug batch keys: {list(batch.keys())}") log(f"🔍 First input_ids: {batch['input_ids'][0][:10]}") log(f"🔍 First labels: {batch['labels'][0][:10]}") log(f"🔍 labels.requires_grad? {torch.tensor(batch['labels']).requires_grad}") # ============================================== # 9. Custom Trainer (safe + debug) # ============================================== class SafeTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False, **kwargs): # Debug batch content once if self.state.global_step == 0: debug_batch(inputs) if "labels" not in inputs: inputs["labels"] = inputs["input_ids"].clone() outputs = model(**inputs) loss = outputs.get("loss") if isinstance(outputs, dict) else outputs[0] return (loss, outputs) if return_outputs else loss log("Initializing Trainer...") trainer = SafeTrainer( model=model, args=training_args, train_dataset=tokenized_dataset, data_collator=data_collator ) log("Trainer initialized ✅") # ============================================== # 10. Train & Push # ============================================== trainable_params = [n for n, p in model.named_parameters() if p.requires_grad] log(f"Trainable params count: {len(trainable_params)}") log(f"First 20 trainable params: {trainable_params[:20]}") last_ckpt = None if os.path.isdir(output_dir): checkpoints = [d for d in os.listdir(output_dir) if d.startswith("checkpoint-")] if checkpoints: last_ckpt = os.path.join(output_dir, sorted(checkpoints)[-1]) if last_ckpt and os.path.isdir(last_ckpt): log(f"Resuming from checkpoint: {last_ckpt}") trainer.train(resume_from_checkpoint=last_ckpt) else: log("No checkpoint found — starting fresh training.") trainer.train() log("Training completed ✅") try: log("Pushing fine-tuned model to Hugging Face Hub...") trainer.push_to_hub(repo_id="dgtalbug/stephen", token=HF_TOKEN) log(f"Model pushed to: https://huggingface.co/dgtalbug/stephen ✅") except Exception as e: log(f"⚠️ Push to hub failed: {e}")