Update README.md
Browse files
README.md
CHANGED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NonverbalTTS Dataset π΅π£οΈ
|
| 2 |
+
|
| 3 |
+
[](https://doi.org/10.5281/zenodo.15274617)
|
| 4 |
+
[](https://huggingface.co/datasets/deepvk/NonverbalTTS)
|
| 5 |
+
|
| 6 |
+
**NonverbalTTS** is a 17-hour open-access English speech corpus with aligned text annotations for **nonverbal vocalizations (NVs)** and **emotional categories**, designed to advance expressive text-to-speech (TTS) research.
|
| 7 |
+
|
| 8 |
+
## Key Features β¨
|
| 9 |
+
|
| 10 |
+
- **17 hours** of high-quality speech data
|
| 11 |
+
- **10 NV types**: Breathing, laughter, sighing, sneezing, coughing, throat clearing, groaning, grunting, snoring, sniffing
|
| 12 |
+
- **8 emotion categories**: Angry, disgusted, fearful, happy, neutral, sad, surprised, other
|
| 13 |
+
- **Diverse speakers**: 2296 speakers (60% male, 40% female)
|
| 14 |
+
- **Multi-source**: Derived from [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/) and [Expresso](https://arxiv.org/abs/2308.05725) corpora
|
| 15 |
+
- **Rich metadata**: Emotion labels, NV annotations, speaker IDs, audio quality metrics
|
| 16 |
+
|
| 17 |
+
<!-- ## Dataset Structure π
|
| 18 |
+
|
| 19 |
+
NonverbalTTS/
|
| 20 |
+
βββ wavs/ # Audio files (16-48kHz WAV format)
|
| 21 |
+
β βββ ex01_sad_00265.wav
|
| 22 |
+
β βββ ...
|
| 23 |
+
βββ .gitattributes
|
| 24 |
+
βββ README.md
|
| 25 |
+
βββ metadata.csv # Metadata annotations -->
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
## Metadata Schema (`metadata.csv`) π
|
| 29 |
+
|
| 30 |
+
| Column | Description | Example |
|
| 31 |
+
|--------|-------------|---------|
|
| 32 |
+
| `index` | Unique sample ID | `ex01_sad_00265` |
|
| 33 |
+
| `file_name` | Audio file path | `wavs/ex01_sad_00265.wav` |
|
| 34 |
+
| `Emotion` | Emotion label | `sad` |
|
| 35 |
+
| `Initial text` | Raw transcription | `"So, Mom, π¬οΈ how've you been?"` |
|
| 36 |
+
| `Annotator response {1,2,3}` | Refined transcriptions | `"So, Mom, how've you been?"` |
|
| 37 |
+
| `Result` | Final fused transcription | `"So, Mom, π¬οΈ how've you been?"` |
|
| 38 |
+
| `dnsmos` | Audio quality score (1-5) | `3.936982` |
|
| 39 |
+
| `duration` | Audio length (seconds) | `3.6338125` |
|
| 40 |
+
| `speaker_id` | Speaker identifier | `ex01` |
|
| 41 |
+
| `data_name` | Source corpus | `Expresso` |
|
| 42 |
+
| `gender` | Speaker gender | `m` |
|
| 43 |
+
|
| 44 |
+
**NV Symbols**: π¬οΈ=Breath, π=Laughter, etc. (See [Annotation Guidelines](https://zenodo.org/records/15274617))
|
| 45 |
+
|
| 46 |
+
## Loading the Dataset π»
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from datasets import load_dataset
|
| 50 |
+
|
| 51 |
+
dataset = load_dataset("deepvk/NonverbalTTS")
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
<!-- # Access train split
|
| 55 |
+
```print(dataset["train"][0])```
|
| 56 |
+
|
| 57 |
+
# Output: {'index': 'ex01_sad_00265', 'file_name': 'wavs/ex01_sad_00265.wav', ...}
|
| 58 |
+
-->
|
| 59 |
+
|
| 60 |
+
## Annotation Pipeline π§
|
| 61 |
+
|
| 62 |
+
1. **Automatic Detection**
|
| 63 |
+
- NV detection using [BEATs](https://arxiv.org/abs/2409.09546)
|
| 64 |
+
- Emotion classification with [emotion2vec+](https://arxiv.org/abs/2402.XXX)
|
| 65 |
+
- ASR transcription via Canary model
|
| 66 |
+
|
| 67 |
+
2. **Human Validation**
|
| 68 |
+
- 3 annotators per sample
|
| 69 |
+
- Filtered non-English/multi-speaker clips
|
| 70 |
+
- NV/emotion validation and refinement
|
| 71 |
+
|
| 72 |
+
3. **Fusion Algorithm**
|
| 73 |
+
- Majority voting for final transcriptions
|
| 74 |
+
- Pyalign-based sequence alignment
|
| 75 |
+
- Multi-annotator hypothesis merging
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
## Benchmark Results π
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
Fine-tuning CosyVoice-300M on NonverbalTTS achieves parity with state-of-the-art proprietary systems:
|
| 82 |
+
|Metric | NVTTS | CosyVoice2 |
|
| 83 |
+
| ------- | ------- | ------- |
|
| 84 |
+
|Speaker Similarity | 0.89 | 0.85 |
|
| 85 |
+
|NV Jaccard (Laugh) | 0.92 | 0.74 |
|
| 86 |
+
|Human Preference | 33.4% | 35.4% |
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
## Use Cases π‘
|
| 90 |
+
- Training expressive TTS models
|
| 91 |
+
- Zero-shot NV synthesis
|
| 92 |
+
- Emotion-aware speech generation
|
| 93 |
+
- Prosody modeling research
|
| 94 |
+
|
| 95 |
+
## License π
|
| 96 |
+
- Annotations: CC BY-NC-SA 4.0
|
| 97 |
+
- Audio: Adheres to original source licenses (VoxCeleb, Expresso)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
## Citation π
|
| 101 |
+
|
| 102 |
+
```
|
| 103 |
+
@dataset{nonverbaltts2024,
|
| 104 |
+
author = {Anonymous},
|
| 105 |
+
title = {NonverbalTTS Dataset},
|
| 106 |
+
month = December,
|
| 107 |
+
year = 2024,
|
| 108 |
+
publisher = {Zenodo},
|
| 109 |
+
version = {1.0},
|
| 110 |
+
doi = {10.5281/zenodo.15274617},
|
| 111 |
+
url = {https://zenodo.org/records/15274617}
|
| 112 |
+
}
|
| 113 |
+
```
|
| 114 |
+
|