Datasets:
README.
Browse files
README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# LAION-Aesthetics :: CLIP → UMAP
|
3 |
+
|
4 |
+
This dataset is a CLIP (text) → UMAP embedding of the extremely cool [LAION-Aesthetics dataset](https://laion.ai/blog/laion-aesthetics/) - specifically the [`improved_aesthetics_6plus` version](https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus), which filters the full dataset to images with scores of > 6 under the "aesthetic" filtering model.
|
5 |
+
|
6 |
+
The dataset here includes coordinates for 3x separate UMAP fits using different values for the `n_neighbors` parameter - `10`, `30`, and `60` - which are broken out as separate columns with different suffixes:
|
7 |
+
|
8 |
+
- `n_neighbors=10` → (`x_nn10`, `y_nn10`)
|
9 |
+
- `n_neighbors=30` → (`x_nn30`, `y_nn30`)
|
10 |
+
- `n_neighbors=60` → (`x_nn60`, `y_nn60`)
|
11 |
+
|
12 |
+
### `nn10`
|
13 |
+
|
14 |
+

|
15 |
+
|
16 |
+
### `nn30`
|
17 |
+
|
18 |
+

|
19 |
+
|
20 |
+
### `nn60`
|
21 |
+
|
22 |
+
(The version from [Twitter](https://twitter.com/clured/status/1565399157606580224).)
|
23 |
+
|
24 |
+

|
25 |
+
|
26 |
+
## Pipeline
|
27 |
+
|
28 |
+
The script for producing this can be found here:
|
29 |
+
|
30 |
+
https://github.com/davidmcclure/loam-viz/blob/laion/laion.py
|
31 |
+
|
32 |
+
And is very simple - just using the `openai/clip-vit-base-patch32` model out-of-the-box to encode the text captions:
|
33 |
+
|
34 |
+
```python
|
35 |
+
@app.command()
|
36 |
+
def clip(
|
37 |
+
src: str,
|
38 |
+
dst: str,
|
39 |
+
text_col: str = 'TEXT',
|
40 |
+
limit: Optional[int] = typer.Option(None),
|
41 |
+
batch_size: int = typer.Option(512),
|
42 |
+
):
|
43 |
+
"""Embed with CLIP."""
|
44 |
+
df = pd.read_parquet(src)
|
45 |
+
|
46 |
+
if limit:
|
47 |
+
df = df.head(limit)
|
48 |
+
|
49 |
+
tokenizer = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32')
|
50 |
+
model = CLIPTextModel.from_pretrained('openai/clip-vit-base-patch32')
|
51 |
+
|
52 |
+
model = model.to(device)
|
53 |
+
|
54 |
+
texts = df[text_col].tolist()
|
55 |
+
|
56 |
+
embeds = []
|
57 |
+
for batch in chunked_iter(tqdm(texts), batch_size):
|
58 |
+
|
59 |
+
enc = tokenizer(
|
60 |
+
batch,
|
61 |
+
return_tensors='pt',
|
62 |
+
padding=True,
|
63 |
+
truncation=True,
|
64 |
+
)
|
65 |
+
|
66 |
+
enc = enc.to(device)
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
res = model(**enc)
|
70 |
+
|
71 |
+
embeds.append(res.pooler_output.to('cpu'))
|
72 |
+
|
73 |
+
embeds = torch.cat(embeds).numpy()
|
74 |
+
|
75 |
+
np.save(dst, embeds)
|
76 |
+
|
77 |
+
print(embeds.shape)
|
78 |
+
```
|
79 |
+
|
80 |
+
Then using `cuml.GaussianRandomProjection` to do an initial squeeze to 64d (which gets the embedding tensor small enough to fit onto a single GPU for the UMAP) -
|
81 |
+
|
82 |
+
```python
|
83 |
+
@app.command()
|
84 |
+
def random_projection(src: str, dst: str, dim: int = 64):
|
85 |
+
"""Random projection on an embedding matrix."""
|
86 |
+
import rmm
|
87 |
+
import cuml
|
88 |
+
|
89 |
+
rmm.reinitialize(managed_memory=True)
|
90 |
+
|
91 |
+
embeds = np.load(src)
|
92 |
+
|
93 |
+
rp = cuml.GaussianRandomProjection(n_components=dim)
|
94 |
+
embeds = rp.fit_transform(embeds)
|
95 |
+
|
96 |
+
np.save(dst, embeds)
|
97 |
+
print(embeds.shape)
|
98 |
+
```
|
99 |
+
|
100 |
+
And then `cuml.UMAP` to get from 64d -> 2d -
|
101 |
+
|
102 |
+
```python
|
103 |
+
@app.command()
|
104 |
+
def umap(
|
105 |
+
df_src: str,
|
106 |
+
embeds_src: str,
|
107 |
+
dst: str,
|
108 |
+
n_neighbors: int = typer.Option(30),
|
109 |
+
n_epochs: int = typer.Option(1000),
|
110 |
+
negative_sample_rate: int = typer.Option(20),
|
111 |
+
):
|
112 |
+
"""UMAP to 2d."""
|
113 |
+
rmm.reinitialize(managed_memory=True)
|
114 |
+
|
115 |
+
df = pd.read_parquet(df_src)
|
116 |
+
|
117 |
+
embeds = np.load(embeds_src)
|
118 |
+
|
119 |
+
embeds = embeds.astype('float16')
|
120 |
+
|
121 |
+
print(embeds.shape)
|
122 |
+
print(embeds.dtype)
|
123 |
+
|
124 |
+
reducer = cuml.UMAP(
|
125 |
+
n_neighbors=n_neighbors,
|
126 |
+
n_epochs=n_epochs,
|
127 |
+
negative_sample_rate=negative_sample_rate,
|
128 |
+
verbose=True,
|
129 |
+
)
|
130 |
+
|
131 |
+
x = reducer.fit_transform(embeds)
|
132 |
+
|
133 |
+
df['x'] = x[:,0]
|
134 |
+
df['y'] = x[:,1]
|
135 |
+
|
136 |
+
df.to_parquet(dst)
|
137 |
+
print(df)
|
138 |
+
```
|
nn10.png
ADDED
![]() |
Git LFS Details
|
nn30.png
ADDED
![]() |
Git LFS Details
|
nn60.jpg
ADDED
![]() |
Git LFS Details
|