File size: 4,390 Bytes
a33d247
 
 
 
 
 
 
 
 
 
 
b95dd27
a33d247
 
b95dd27
a33d247
 
b95dd27
a33d247
 
 
 
 
 
 
b95dd27
 
 
 
 
 
 
a33d247
b95dd27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
dataset_info:
  features:
  - name: id
    dtype: string
  - name: image
    dtype: image
  - name: text_output
    dtype: string
  splits:
  - name: train
    num_bytes: 28126563
    num_examples: 149
  - name: test
    num_bytes: 10195323
    num_examples: 50
  download_size: 36491665
  dataset_size: 38321886
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: mit
task_categories:
- question-answering
language:
- en
size_categories:
- n<1K
---

# Dataset Card for FUNSD (JSON Format)

This dataset contains the preprocessed **JSON format** of the [FUNSD dataset](https://guillaumejaume.github.io/FUNSD/), designed for **form understanding in noisy scanned documents**. It includes the original structure with annotations in JSON format, as per the original FUNSD dataset. This dataset is intended for document understanding tasks such as OCR, layout parsing, and key-value extraction.

## Dataset Details

### Dataset Description

The **FUNSD (Form Understanding in Noisy Scanned Documents)** dataset is a collection of noisy scanned document images, designed for **OCR and form recognition tasks**. This version contains the **original JSON annotations** for training and testing models in form understanding tasks.

- **Curated by:** [David (Tan) LE](https://github.com/tanle8)
- **Language(s):** English (labels, tags)
- **License:** Apache License 2.0 (from the original FUNSD dataset)

### Dataset Sources

- **Repository:** [Original FUNSD Dataset Repository](https://guillaumejaume.github.io/FUNSD/)
- **Paper:** [Jaume et al., 2019](https://ieeexplore.ieee.org/document/8978100)

---

## Uses

### Direct Use

This dataset can be used for:
- Fine-tuning **document understanding models** such as Donut, LayoutLM, and other OCR-based models.
- Training and evaluating models for **form extraction** (questions, answers, headers).
- Research in **key-value extraction and layout parsing**.

---

## Dataset Structure

- **id:** Unique identifier for each document.
- **image:** The document image (RGB format).
- **text_output:** JSON annotations containing:
  - `"form"`: A list of labeled fields (e.g., "question", "answer", "header").
  - `"words"`: Word-level annotations with bounding boxes.
  - `"linking"`: Relationships (e.g., links between "question" and "answer").

### Splits
- **Train:** 149 examples
- **Test:** 50 examples

---

## Dataset Creation

### Curation Rationale

This version retains the original JSON format of the FUNSD dataset, making it easy to use for models designed for form understanding tasks without the need to convert to XML or TEI formats.

### Source Data

The dataset is sourced from the original **FUNSD** repository:
- **Images:** Scanned document images.
- **Annotations:** Original annotations in JSON format.

#### Data Collection and Processing

The dataset was not altered apart from formatting to maintain compatibility with the Hugging Face `datasets` library.

---

## Annotations

### Annotation Process
The annotations in JSON format contain:
- **Bounding boxes** for each form element.
- **Labels** for "question", "answer", "header", and "other".
- **Linking information** to capture relationships between form elements.

---

## Bias, Risks, and Limitations

### Risks and Limitations
- The dataset contains noisy, real-world scanned documents that may not generalize to synthetic or clean data.
- Some form layouts may not follow typical Western document standards, which could bias model training.

---

## Citation

If you use this dataset, please cite the original paper:

**BibTeX:**
```bibtex
@article{Jaume2019FUNSDAD,
  title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents},
  author={Guillaume Jaume and H. K. Ekenel and J. Thiran},
  journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)},
  year={2019},
  volume={2},
  pages={1-6}
}
```

APA: Jaume, G., Ekenel, H. K., & Thiran, J. (2019). FUNSD: A dataset for form understanding in noisy scanned documents. 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), 1–6.

## Dataset Card Authors
David (Tan) LE - [GitHub Profile](https://github.com/tanle8)

## Dataset Card Contact
For any issues or questions about this dataset, contact me through the HuggingFace message system.