import time import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Disables tensorflow loggings from options import get_options from data import create_dataset from networks import create_model, get_model_options from argparse import ArgumentParser as AP import pytorch_lightning as pl from pytorch_lightning.loggers import TensorBoardLogger from util.callbacks import LogAndCheckpointEveryNSteps from human_id import generate_id def start(cmdline): pl.trainer.seed_everything(cmdline.seed) opt = get_options(cmdline) dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options model = create_model(opt) # create a model given opt.model and other options callbacks = [] logger = None if not cmdline.debug: root_dir = os.path.join('logs/', generate_id()) if cmdline.id == None else os.path.join('logs/', cmdline.id) logger = TensorBoardLogger(save_dir=os.path.join(root_dir, 'tensorboard')) logger.log_hyperparams(opt) callbacks.append(LogAndCheckpointEveryNSteps(save_step_frequency=opt.save_latest_freq, viz_frequency=opt.display_freq, log_frequency=opt.print_freq)) else: root_dir = os.path.join('/tmp', generate_id()) precision = 16 if cmdline.mixed_precision else 32 trainer = pl.Trainer(default_root_dir=os.path.join(root_dir, 'checkpoints'), callbacks=callbacks, gpus=cmdline.gpus, logger=logger, precision=precision, amp_level='01') trainer.fit(model, dataset) if __name__ == '__main__': ap = AP() ap.add_argument('--id', default=None, type=str, help='Set an existing uuid to resume a training') ap.add_argument('--debug', default=False, action='store_true', help='Disables experiment saving') ap.add_argument('--gpus', default=[0], type=int, nargs='+', help='gpus to train on') ap.add_argument('--model', default='comomunit', type=str, help='Choose model for training') ap.add_argument('--data_importer', default='day2timelapse', type=str, help='Module name of the dataset importer') ap.add_argument('--path_data', default='/datasets/waymo_comogan/train/', type=str, help='Path to the dataset') ap.add_argument('--learning_rate', default=0.0001, type=float, help='Learning rate') ap.add_argument('--scheduler_policy', default='step', type=str, help='Scheduler policy') ap.add_argument('--decay_iters_step', default=200000, type=int, help='Decay iterations step') ap.add_argument('--decay_step_gamma', default=0.5, type=float, help='Decay step gamma') ap.add_argument('--seed', default=1, type=int, help='Random seed') ap.add_argument('--mixed_precision', default=False, action='store_true', help='Use mixed precision to reduce memory usage') start(ap.parse_args())