Datasets:

Modalities:
Tabular
Text
Formats:
csv
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
GilSemoDarrow commited on
Commit
0be35e2
·
1 Parent(s): 75ff642

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -1,3 +1,50 @@
1
  ---
2
  license: gpl-3.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: gpl-3.0
3
  ---
4
+ ## Dataset Description
5
+
6
+ - **Homepage:** https://www.darrow.ai/
7
+ - **Repository:** https://github.com/darrow-labs/ClassActionPrediction
8
+ - **Paper:** https://arxiv.org/abs/2110.
9
+ - **Leaderboard:** N/A
10
+ - **Point of Contact:** [Gila Hayat](mailto:[email protected])
11
+
12
+ ### Dataset Summary
13
+
14
+ USClassActions is an English dataset of 200 complaints from the US Federal Court with the respective binarized judgment outcome (Win/Lose). The dataset poses a challenging text classification task. We are happy to share this dataset in order to promote robustness and fairness studies on the critical area of legal NLP.
15
+
16
+ ### Data Instances
17
+ ```python
18
+ from datasets import load_dataset
19
+ dataset = load_dataset('darrow-ai/USClassActionOutcomes_ExpertsAnnotations')
20
+ ```
21
+ ### Data Fields
22
+ `id`: (**int**) a unique identifier of the document \
23
+ `origin_label `: (**str**) the outcome of the case \
24
+ `target_text`: (**str**) the facts of the case \
25
+ `annotator_prediction `: (**str**) annotators predictions of the case outcome based on the target_text \
26
+ `annotator_confidence `: (**str**) the annotator's level of confidence in his outcome prediction \
27
+
28
+ ### Curation Rationale
29
+
30
+ The dataset was curated by Darrow.ai (2022).
31
+
32
+ ### Citation Information
33
+
34
+ *Gil Semo, Dor Bernsohn, Ben Hagag, Gila Hayat, and Joel Niklaus*
35
+ *ClassActionPrediction: A Challenging Benchmark for Legal Judgment Prediction of Class Action Cases in the US*
36
+ *Proceedings of the 2022 Natural Legal Language Processing Workshop. Abu Dhabi. 2022*
37
+ ```
38
+ @InProceedings{darrow-niklaus-2022-uscp,
39
+ author = {Semo, Gil
40
+ and Bernsohn, Dor
41
+ and Stürmer, Matthias
42
+ and Hagag, Ben
43
+ and Hayat, Gila
44
+ and Niklaus, Joel},
45
+ title = {ClassActionPrediction: A Challenging Benchmark for Legal Judgment Prediction of Class Action Cases in the US},
46
+ booktitle = {Proceedings of the 2022 Natural Legal Language Processing Workshop},
47
+ year = {2022},
48
+ location = {Abu Dhabi},
49
+ }
50
+ ```