Datasets:
Update Crello dataset card for LayerD paper and image segmentation task (#7)
Browse files- Update Crello dataset card for LayerD paper and image segmentation task (8a7acdbeabb65e02f4766897da9faad4ab284704)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -13,7 +13,7 @@ size_categories:
|
|
| 13 |
source_datasets:
|
| 14 |
- original
|
| 15 |
task_categories:
|
| 16 |
-
-
|
| 17 |
task_ids: []
|
| 18 |
pretty_name: crello
|
| 19 |
tags:
|
|
@@ -528,6 +528,11 @@ configs:
|
|
| 528 |
- [Table of Contents](#table-of-contents)
|
| 529 |
- [Dataset Description](#dataset-description)
|
| 530 |
- [Dataset Summary](#dataset-summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 532 |
- [Languages](#languages)
|
| 533 |
- [Dataset Structure](#dataset-structure)
|
|
@@ -552,17 +557,22 @@ configs:
|
|
| 552 |
|
| 553 |
## Dataset Description
|
| 554 |
|
| 555 |
-
-
|
| 556 |
-
- **Repository:**
|
| 557 |
-
- **Paper:** [CanvasVAE: Learning to Generate Vector Graphic Documents](https://arxiv.org/abs/2108.01249)
|
| 558 |
-
- **Leaderboard:**
|
| 559 |
-
- **Point of Contact:** [Kota Yamaguchi](https://github.com/kyamagu)
|
| 560 |
|
| 561 |
-
###
|
| 562 |
|
| 563 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
|
| 565 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
|
| 567 |
```python
|
| 568 |
import datasets
|
|
@@ -570,9 +580,20 @@ import datasets
|
|
| 570 |
dataset = datasets.load_dataset("cyberagent/crello", revision="5.0.0")
|
| 571 |
```
|
| 572 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
### Supported Tasks and Leaderboards
|
| 574 |
|
| 575 |
-
|
| 576 |
|
| 577 |
### Languages
|
| 578 |
|
|
@@ -601,54 +622,56 @@ In the following, categorical fields are shown as `categorical` type, but the ac
|
|
| 601 |
|
| 602 |
**Canvas attributes**
|
| 603 |
|
| 604 |
-
| Field
|
| 605 |
-
|
|
| 606 |
-
| id
|
| 607 |
-
| group
|
| 608 |
-
| format
|
| 609 |
-
| category
|
| 610 |
-
| canvas_width
|
| 611 |
-
| canvas_height | int64
|
| 612 |
-
| length
|
| 613 |
-
| suitability
|
| 614 |
-
| keywords
|
| 615 |
-
| industries
|
| 616 |
-
| preview
|
| 617 |
-
| cluster_index | int64
|
| 618 |
|
| 619 |
**Element attributes**
|
| 620 |
|
| 621 |
-
| Field
|
| 622 |
-
|
|
| 623 |
-
| type
|
| 624 |
-
| left
|
| 625 |
-
| top
|
| 626 |
-
| width
|
| 627 |
-
| height
|
| 628 |
-
| color
|
| 629 |
-
| opacity
|
| 630 |
-
| image
|
| 631 |
-
| text
|
| 632 |
-
| font
|
| 633 |
-
| font_size
|
| 634 |
-
| text_align
|
| 635 |
-
| angle
|
| 636 |
-
| font_bold
|
| 637 |
-
| font_italic
|
| 638 |
-
| text_color
|
| 639 |
-
| text_line
|
| 640 |
-
| capitalize
|
| 641 |
-
| line_height
|
| 642 |
-
| letter_spacing | float32
|
| 643 |
|
| 644 |
`left` and `top` can be negative because elements can be bigger than the canvas size.
|
| 645 |
`text_line` indicates the index of the text line.
|
| 646 |
For example, the following indicates that `Be` is in the first line and the rest in the next line.
|
| 647 |
-
The newline character
|
|
|
|
| 648 |
|
| 649 |
```
|
| 650 |
{
|
| 651 |
-
"text": "Be
|
|
|
|
| 652 |
"text_line": [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
| 653 |
}
|
| 654 |
```
|
|
@@ -737,6 +760,17 @@ We do not re-distribute the original files as we are not allowed by terms.
|
|
| 737 |
year={2021}
|
| 738 |
}
|
| 739 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 740 |
### Releases
|
| 741 |
|
| 742 |
5.1.0: v5.1 release (Oct 31, 2024)
|
|
@@ -780,7 +814,6 @@ We do not re-distribute the original files as we are not allowed by terms.
|
|
| 780 |
|
| 781 |
1.0: v1 release (Aug 24, 2021)
|
| 782 |
|
| 783 |
-
|
| 784 |
### Contributions
|
| 785 |
|
| 786 |
Thanks to [@kyamagu](https://github.com/kyamagu) for adding this dataset.
|
|
|
|
| 13 |
source_datasets:
|
| 14 |
- original
|
| 15 |
task_categories:
|
| 16 |
+
- image-segmentation
|
| 17 |
task_ids: []
|
| 18 |
pretty_name: crello
|
| 19 |
tags:
|
|
|
|
| 528 |
- [Table of Contents](#table-of-contents)
|
| 529 |
- [Dataset Description](#dataset-description)
|
| 530 |
- [Dataset Summary](#dataset-summary)
|
| 531 |
+
- [Associated Projects and Papers](#associated-projects-and-papers)
|
| 532 |
+
- [LayerD: Decomposing Raster Graphic Designs into Layers](#layerd-decomposing-raster-graphic-designs-into-layers)
|
| 533 |
+
- [CanvasVAE: Learning to Generate Vector Graphic Documents (Original Context)](#canvasvae-learning-to-generate-vector-graphic-documents-original-context)
|
| 534 |
+
- [Usage (Loading the dataset)](#usage-loading-the-dataset)
|
| 535 |
+
- [Sample Usage (LayerD Data Preparation)](#sample-usage-layerd-data-preparation)
|
| 536 |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 537 |
- [Languages](#languages)
|
| 538 |
- [Dataset Structure](#dataset-structure)
|
|
|
|
| 557 |
|
| 558 |
## Dataset Description
|
| 559 |
|
| 560 |
+
The Crello dataset is a collection of raster graphic designs originally compiled for the study of vector graphic documents. It contains document meta-data such as canvas size and pre-rendered elements such as images or text boxes. The original templates were collected from [crello.com](https://crello.com) (now [create.vista.com](https://create.vista.com/)) and converted to a low-resolution format suitable for machine learning analysis. More recently, it has been used for research into decomposing raster graphic designs into layers, as presented in the LayerD paper.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
|
| 562 |
+
### Associated Projects and Papers
|
| 563 |
|
| 564 |
+
#### LayerD: Decomposing Raster Graphic Designs into Layers
|
| 565 |
+
- **Paper:** [LayerD: Decomposing Raster Graphic Designs into Layers](https://huggingface.co/papers/2509.25134)
|
| 566 |
+
- **Project Page:** https://cyberagentailab.github.io/LayerD/
|
| 567 |
+
- **Repository:** https://github.com/CyberAgentAILab/LayerD
|
| 568 |
+
- **Point of Contact:** [Tomoyuki Suzuki](https://tomoyukun.github.io/biography/), Kang-Jun Liu, [Naoto Inoue](https://naoto0804.github.io/), [Kota Yamaguchi](https://sites.google.com/view/kyamagu)
|
| 569 |
|
| 570 |
+
#### CanvasVAE: Learning to Generate Vector Graphic Documents (Original Context)
|
| 571 |
+
- **Paper:** [CanvasVAE: Learning to Generate Vector Graphic Documents](https://arxiv.org/abs/2108.01249)
|
| 572 |
+
- **Homepage:** [CanvasVAE github](https://github.com/CyberAgentAILab/canvas-vae)
|
| 573 |
+
- **Point of Contact:** [Kota Yamaguchi](https://github.com/kyamagu)
|
| 574 |
+
|
| 575 |
+
### Usage (Loading the dataset)
|
| 576 |
|
| 577 |
```python
|
| 578 |
import datasets
|
|
|
|
| 580 |
dataset = datasets.load_dataset("cyberagent/crello", revision="5.0.0")
|
| 581 |
```
|
| 582 |
|
| 583 |
+
### Sample Usage (LayerD Data Preparation)
|
| 584 |
+
|
| 585 |
+
The LayerD project, which uses this dataset for training its top-layer matting module, provides a script to prepare the Crello dataset. You can convert the Crello dataset for this purpose using the following command from the LayerD repository:
|
| 586 |
+
|
| 587 |
+
```bash
|
| 588 |
+
uv run python ./tools/generate_crello_matting.py --output-dir </path/to/dataset> --inpainting --save-layers
|
| 589 |
+
```
|
| 590 |
+
|
| 591 |
+
> [!NOTE]
|
| 592 |
+
> This script downloads [the Crello dataset](https://huggingface.co/datasets/cyberagent/crello) (<20GB) from Hugging Face. Please ensure you have a stable internet connection and sufficient disk space for the first run.
|
| 593 |
+
|
| 594 |
### Supported Tasks and Leaderboards
|
| 595 |
|
| 596 |
+
The Crello dataset supports unsupervised document generation (as studied by CanvasVAE) and layer decomposition / image segmentation (as studied by LayerD).
|
| 597 |
|
| 598 |
### Languages
|
| 599 |
|
|
|
|
| 622 |
|
| 623 |
**Canvas attributes**
|
| 624 |
|
| 625 |
+
| Field | Type | Shape | Description |
|
| 626 |
+
| :------------ | :---------- | :------ | :-------------------------------------------------------------- |
|
| 627 |
+
| id | string | () | Template ID from create.vista.com |
|
| 628 |
+
| group | categorical | () | Broad design groups, such as social media posts or blog headers |
|
| 629 |
+
| format | categorical | () | Detailed design formats, such as Instagram post or postcard |
|
| 630 |
+
| category | categorical | () | Topic category of the design, such as holiday celebration |
|
| 631 |
+
| canvas_width | int64 | () | Canvas pixel width |
|
| 632 |
+
| canvas_height | int64 | () | Canvas pixel height |
|
| 633 |
+
| length | int64 | () | Length of elements |
|
| 634 |
+
| suitability | categorical | (None,) | List of display tags, only `mobile` tag exists |
|
| 635 |
+
| keywords | string | (None,) | List of keywords associated to this template |
|
| 636 |
+
| industries | categorical | (None,) | List of industry tags like `marketingAds` |
|
| 637 |
+
| preview | image | () | Preview image of the template for convenience |
|
| 638 |
+
| cluster_index | int64 | () | Cluster index used to split the dataset; only for debugging |
|
| 639 |
|
| 640 |
**Element attributes**
|
| 641 |
|
| 642 |
+
| Field | Type | Shape | Description |
|
| 643 |
+
| :------------ | :---------- | :----------- | :--------------------------------------------------------------- |
|
| 644 |
+
| type | categorical | (None,) | Element type, such as vector shape, image, or text |
|
| 645 |
+
| left | float32 | (None,) | Element left position |
|
| 646 |
+
| top | float32 | (None,) | Element top position |
|
| 647 |
+
| width | float32 | (None,) | Element width |
|
| 648 |
+
| height | float32 | (None,) | Element height |
|
| 649 |
+
| color | string | (None, None) | RGB color palette of the vector graphic element |
|
| 650 |
+
| opacity | float32 | (None,) | Opacity in [0, 1] range |
|
| 651 |
+
| image | image | (None,) | Pre-rendered preview of the element encoded in PNG format |
|
| 652 |
+
| text | string | (None,) | Text content in UTF-8 encoding for text element |
|
| 653 |
+
| font | categorical | (None,) | Font family name for text element |
|
| 654 |
+
| font_size | float32 | (None,) | Font size (height) in pixels |
|
| 655 |
+
| text_align | categorical | (None,) | Horizontal text alignment, left, center, right for text element |
|
| 656 |
+
| angle | float32 | (None,) | Element rotation angle (degree) w.r.t. the center of the element |
|
| 657 |
+
| font_bold | boolean | (None, None) | Character-wise flag to indicate bold font |
|
| 658 |
+
| font_italic | boolean | (None, None) | Character-wise flag to indicate italic font |
|
| 659 |
+
| text_color | string | (None, None) | Character-wise rgba color |
|
| 660 |
+
| text_line | int64 | (None, None) | Character-wise index of line number |
|
| 661 |
+
| capitalize | boolean | (None,) | Binary flag to capitalize letters |
|
| 662 |
+
| line_height | float32 | (None,) | Scaling parameter to line height, default is 1.0 |
|
| 663 |
+
| letter_spacing | float32 | (None,) | Adjustment parameter for letter spacing, default is 0.0 |
|
| 664 |
|
| 665 |
`left` and `top` can be negative because elements can be bigger than the canvas size.
|
| 666 |
`text_line` indicates the index of the text line.
|
| 667 |
For example, the following indicates that `Be` is in the first line and the rest in the next line.
|
| 668 |
+
The newline character `
|
| 669 |
+
` if present is ignored in rendering.
|
| 670 |
|
| 671 |
```
|
| 672 |
{
|
| 673 |
+
"text": "Be
|
| 674 |
+
ambitious!",
|
| 675 |
"text_line": [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
| 676 |
}
|
| 677 |
```
|
|
|
|
| 760 |
year={2021}
|
| 761 |
}
|
| 762 |
|
| 763 |
+
If you use the Crello dataset in work related to layer decomposition or the LayerD project, please also cite:
|
| 764 |
+
|
| 765 |
+
```bibtex
|
| 766 |
+
@inproceedings{suzuki2025layerd,
|
| 767 |
+
title={LayerD: Decomposing Raster Graphic Designs into Layers},
|
| 768 |
+
author={Suzuki, Tomoyuki and Liu, Kang-Jun and Inoue, Naoto and Yamaguchi, Kota},
|
| 769 |
+
booktitle={ICCV},
|
| 770 |
+
year={2025}
|
| 771 |
+
}
|
| 772 |
+
```
|
| 773 |
+
|
| 774 |
### Releases
|
| 775 |
|
| 776 |
5.1.0: v5.1 release (Oct 31, 2024)
|
|
|
|
| 814 |
|
| 815 |
1.0: v1 release (Aug 24, 2021)
|
| 816 |
|
|
|
|
| 817 |
### Contributions
|
| 818 |
|
| 819 |
Thanks to [@kyamagu](https://github.com/kyamagu) for adding this dataset.
|