|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""GAP is a gender-balanced text data set.""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{DBLP:journals/corr/abs-1810-05201, |
|
author = {Kellie Webster and |
|
Marta Recasens and |
|
Vera Axelrod and |
|
Jason Baldridge}, |
|
title = {Mind the {GAP:} {A} Balanced Corpus of Gendered Ambiguous Pronouns}, |
|
journal = {CoRR}, |
|
volume = {abs/1810.05201}, |
|
year = {2018}, |
|
url = {http://arxiv.org/abs/1810.05201}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1810.05201}, |
|
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, |
|
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1810-05201}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
GAP is a gender-balanced dataset containing 8,908 coreference-labeled pairs of |
|
(ambiguous pronoun, antecedent name), sampled from Wikipedia and released by |
|
Google AI Language for the evaluation of coreference resolution in practical |
|
applications. |
|
""" |
|
|
|
_TRAINURL = "https://raw.githubusercontent.com/google-research-datasets/gap-coreference/master/gap-development.tsv" |
|
_VALIDATIONURL = "https://raw.githubusercontent.com/google-research-datasets/gap-coreference/master/gap-validation.tsv" |
|
_TESTURL = "https://raw.githubusercontent.com/google-research-datasets/gap-coreference/master/gap-test.tsv" |
|
|
|
|
|
class Gap(datasets.GeneratorBasedBuilder): |
|
"""GAP is a gender-balanced dataset. |
|
|
|
It contains 8,908 coreference-labeled pairs |
|
of (ambiguous pronoun, antecedent name), sampled from Wikipedia. |
|
""" |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"ID": datasets.Value("string"), |
|
"Text": datasets.Value("string"), |
|
"Pronoun": datasets.Value("string"), |
|
"Pronoun-offset": datasets.Value("int32"), |
|
"A": datasets.Value("string"), |
|
"A-offset": datasets.Value("int32"), |
|
"A-coref": datasets.Value("bool"), |
|
"B": datasets.Value("string"), |
|
"B-offset": datasets.Value("int32"), |
|
"B-coref": datasets.Value("bool"), |
|
"URL": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/google-research-datasets/gap-coreference", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
directory = dl_manager.download_and_extract( |
|
{"train": _TRAINURL, "validation": _VALIDATIONURL, "test": _TESTURL} |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": directory["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": directory["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": directory["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as tsvfile: |
|
reader = csv.DictReader(tsvfile, dialect="excel-tab") |
|
for i, row in enumerate(reader): |
|
row["A-coref"] = row["A-coref"] == "TRUE" |
|
row["B-coref"] = row["B-coref"] == "TRUE" |
|
row["A-offset"] = int(row["A-offset"]) |
|
row["B-offset"] = int(row["B-offset"]) |
|
row["Pronoun-offset"] = int(row["Pronoun-offset"]) |
|
yield i, row |