File size: 6,556 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import io
import random
import traceback
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import IterableDataset
def episode_len(episode):
# subtract -1 because the dummy first transition
return next(iter(episode.values())).shape[0] - 1
def save_episode(episode, fn):
with io.BytesIO() as bs:
np.savez_compressed(bs, **episode)
bs.seek(0)
with fn.open('wb') as f:
f.write(bs.read())
def load_episode(fn):
with fn.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
return episode
class ReplayBufferStorage:
def __init__(self, data_specs, replay_dir):
self._data_specs = data_specs
self._replay_dir = replay_dir
replay_dir.mkdir(exist_ok=True)
self._current_episode = defaultdict(list)
self._preload()
def __len__(self):
return self._num_transitions
def add(self, time_step):
for spec in self._data_specs:
value = time_step[spec.name]
if np.isscalar(value):
value = np.full(spec.shape, value, spec.dtype)
assert spec.shape == value.shape and spec.dtype == value.dtype
self._current_episode[spec.name].append(value)
if time_step.last():
episode = dict()
for spec in self._data_specs:
value = self._current_episode[spec.name]
episode[spec.name] = np.array(value, spec.dtype)
self._current_episode = defaultdict(list)
self._store_episode(episode)
def _preload(self):
self._num_episodes = 0
self._num_transitions = 0
for fn in self._replay_dir.glob('*.npz'):
_, _, eps_len = fn.stem.split('_')
self._num_episodes += 1
self._num_transitions += int(eps_len)
def _store_episode(self, episode):
eps_idx = self._num_episodes
eps_len = episode_len(episode)
self._num_episodes += 1
self._num_transitions += eps_len
ts = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
eps_fn = f'{ts}_{eps_idx}_{eps_len}.npz'
save_episode(episode, self._replay_dir / eps_fn)
class ReplayBuffer(IterableDataset):
def __init__(self, replay_dir, max_size, num_workers, nstep, discount,
fetch_every, save_snapshot):
self._replay_dir = replay_dir
self._size = 0
self._max_size = max_size
self._num_workers = max(1, num_workers)
self._episode_fns = []
self._episodes = dict()
self._nstep = nstep
self._discount = discount
self._fetch_every = fetch_every
self._samples_since_last_fetch = fetch_every
self._save_snapshot = save_snapshot
def _sample_episode(self):
eps_fn = random.choice(self._episode_fns)
return self._episodes[eps_fn]
def _store_episode(self, eps_fn):
try:
episode = load_episode(eps_fn)
except:
return False
eps_len = episode_len(episode)
while eps_len + self._size > self._max_size:
early_eps_fn = self._episode_fns.pop(0)
early_eps = self._episodes.pop(early_eps_fn)
self._size -= episode_len(early_eps)
early_eps_fn.unlink(missing_ok=True)
self._episode_fns.append(eps_fn)
self._episode_fns.sort()
self._episodes[eps_fn] = episode
self._size += eps_len
if not self._save_snapshot:
eps_fn.unlink(missing_ok=True)
return True
def _try_fetch(self):
if self._samples_since_last_fetch < self._fetch_every:
return
self._samples_since_last_fetch = 0
try:
worker_id = torch.utils.data.get_worker_info().id
except:
worker_id = 0
eps_fns = sorted(self._replay_dir.glob('*.npz'), reverse=True)
fetched_size = 0
for eps_fn in eps_fns:
eps_idx, eps_len = [int(x) for x in eps_fn.stem.split('_')[1:]]
if eps_idx % self._num_workers != worker_id:
continue
if eps_fn in self._episodes.keys():
break
if fetched_size + eps_len > self._max_size:
break
fetched_size += eps_len
if not self._store_episode(eps_fn):
break
def _sample(self):
try:
self._try_fetch()
except:
traceback.print_exc()
self._samples_since_last_fetch += 1
episode = self._sample_episode()
# add +1 for the first dummy transition
idx = np.random.randint(0, episode_len(episode) - self._nstep + 1) + 1
obs = episode['observation'][idx - 1]
action = episode['action'][idx]
next_obs = episode['observation'][idx + self._nstep - 1]
reward = np.zeros_like(episode['reward'][idx])
discount = np.ones_like(episode['discount'][idx])
for i in range(self._nstep):
step_reward = episode['reward'][idx + i]
reward += discount * step_reward
discount *= episode['discount'][idx + i] * self._discount
return (obs, action, reward, discount, next_obs)
def __iter__(self):
while True:
yield self._sample()
def _worker_init_fn(worker_id):
seed = np.random.get_state()[1][0] + worker_id
np.random.seed(seed)
random.seed(seed)
def make_replay_loader(replay_dir, max_size, batch_size, num_workers,
save_snapshot, nstep, discount):
max_size_per_worker = max_size // max(1, num_workers)
iterable = ReplayBuffer(replay_dir,
max_size_per_worker,
num_workers,
nstep,
discount,
fetch_every=1000,
save_snapshot=save_snapshot)
loader = torch.utils.data.DataLoader(iterable,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
worker_init_fn=_worker_init_fn)
return loader
|