File size: 9,782 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import hydra
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

import utils
from drqv2 import Actor, Critic, Encoder, RandomShiftsAug, NoShiftAug


class CQLAgent:
    def __init__(
            self,
            obs_shape,
            action_shape,
            device,
            lr,
            feature_dim,
            hidden_dim,
            critic_target_tau,
            num_expl_steps,
            update_every_steps,
            stddev_schedule,
            stddev_clip,
            use_tb,
            offline=False,
            augmentation=RandomShiftsAug(pad=4),
            # CQL
            cql_importance_sample=False,
            temp=1.0,
            min_q_weight=1.0,
            # sort of backup
            num_random=10,
            with_lagrange=False,
            lagrange_thresh=0.0,
    ):
        self.device = device
        self.critic_target_tau = critic_target_tau
        self.update_every_steps = update_every_steps
        self.use_tb = use_tb
        self.num_expl_steps = num_expl_steps
        self.stddev_schedule = stddev_schedule
        self.stddev_clip = stddev_clip
        self.offline = offline

        # models
        self.encoder = Encoder(obs_shape).to(device)
        self.actor = Actor(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device)

        self.critic = Critic(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device)
        self.critic_target = Critic(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device)
        self.critic_target.load_state_dict(self.critic.state_dict())

        # optimizers
        self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=lr)
        self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=lr)
        self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=lr)

        # data augmentation
        self.aug = augmentation

        # CQL
        self.with_lagrange = with_lagrange
        if self.with_lagrange:
            self.target_action_gap = lagrange_thresh
            self.log_alpha_prime = torch.zeros(1, requires_grad=True, device=device)
            self.alpha_prime_optimizer = torch.optim.Adam([self.log_alpha_prime], lr=lr)

        ## min Q
        self.temp = temp
        self.cql_importance_sample = cql_importance_sample
        self.min_q_weight = min_q_weight
        self.num_random = num_random

        self.train()
        self.critic_target.train()

    def train(self, training=True):
        self.training = training
        self.encoder.train(training)
        self.actor.train(training)
        self.critic.train(training)

    def act(self, obs, step, eval_mode):
        obs = torch.as_tensor(obs, device=self.device)
        obs = self.encoder(obs.unsqueeze(0))
        stddev = utils.schedule(self.stddev_schedule, step)
        dist = self.actor(obs, stddev)
        if eval_mode:
            action = dist.mean
        else:
            action = dist.sample(clip=None)
            if step < self.num_expl_steps:
                action.uniform_(-1.0, 1.0)
        return action.cpu().numpy()[0]

    def update_critic(self, obs, action, reward, discount, next_obs, step):
        metrics = dict()

        with torch.no_grad():
            stddev = utils.schedule(self.stddev_schedule, step)
            dist = self.actor(next_obs, stddev)
            next_action = dist.sample(clip=self.stddev_clip)
            target_Q1, target_Q2 = self.critic_target(next_obs, next_action)
            target_V = torch.min(target_Q1, target_Q2)
            target_Q = reward.float() + (discount * target_V)

        Q1, Q2 = self.critic(obs, action)
        qf1_loss = F.mse_loss(Q1, target_Q)
        qf2_loss = F.mse_loss(Q2, target_Q)

        # add CQL
        if self.offline:
            obs = obs.unsqueeze(1).repeat(1, self.num_random, 1)
            next_obs = next_obs.unsqueeze(1).repeat(1, self.num_random, 1)

            random_actions_tensor = torch.FloatTensor(Q1.shape[0], self.num_random, action.shape[-1]) \
                .uniform_(-1, 1).to(self.device)

            with torch.no_grad():
                curr_dist = self.actor(obs, stddev)
                curr_actions_tensor = curr_dist.sample(clip=self.stddev_clip)
                curr_log_pis = curr_dist.log_prob(curr_actions_tensor).sum(dim=-1, keepdim=True)

                new_curr_dist = self.actor(next_obs, stddev)
                new_curr_actions_tensor = new_curr_dist.sample(clip=self.stddev_clip)
                new_log_pis = new_curr_dist.log_prob(new_curr_actions_tensor).sum(dim=-1, keepdim=True)

            q1_rand, q2_rand = self.critic(obs, random_actions_tensor)
            q1_curr_actions, q2_curr_actions = self.critic(obs, curr_actions_tensor)
            q1_next_actions, q2_next_actions = self.critic(obs, new_curr_actions_tensor)

            if self.cql_importance_sample:
                random_density = np.log(0.5 ** curr_actions_tensor.shape[-1])
                cat_q1 = torch.cat(
                    [q1_rand - random_density, q1_next_actions - new_log_pis, q1_curr_actions - curr_log_pis], 1
                )
                cat_q2 = torch.cat(
                    [q2_rand - random_density, q2_next_actions - new_log_pis, q2_curr_actions - curr_log_pis], 1
                )
            else:
                cat_q1 = torch.cat([q1_rand, Q1.unsqueeze(1), q1_next_actions, q1_curr_actions], 1)
                cat_q2 = torch.cat([q2_rand, Q2.unsqueeze(1), q2_next_actions, q2_curr_actions], 1)

            min_qf1_loss = torch.logsumexp(cat_q1 / self.temp, dim=1, ).mean() * self.min_q_weight * self.temp
            min_qf2_loss = torch.logsumexp(cat_q2 / self.temp, dim=1, ).mean() * self.min_q_weight * self.temp

            """Subtract the log likelihood of data"""
            min_qf1_loss = min_qf1_loss - Q1.mean() * self.min_q_weight
            min_qf2_loss = min_qf2_loss - Q2.mean() * self.min_q_weight

            if self.with_lagrange:
                alpha_prime = torch.clamp(self.log_alpha_prime.exp(), min=0.0, max=1000000.0)
                min_qf1_loss = alpha_prime * (min_qf1_loss - self.target_action_gap)
                min_qf2_loss = alpha_prime * (min_qf2_loss - self.target_action_gap)

                self.alpha_prime_optimizer.zero_grad()
                alpha_prime_loss = (-min_qf1_loss - min_qf2_loss) * 0.5
                alpha_prime_loss.backward(retain_graph=True)
                self.alpha_prime_optimizer.step()

            qf1_loss = qf1_loss + min_qf1_loss
            qf2_loss = qf2_loss + min_qf2_loss

        critic_loss = qf1_loss + qf2_loss

        if self.use_tb:
            metrics['critic_target_q'] = target_Q.mean().item()
            metrics['critic_q1'] = Q1.mean().item()
            metrics['critic_q2'] = Q2.mean().item()
            metrics['critic_loss'] = critic_loss.item()
            if self.offline:
                metrics['cql_critic_q1_rand'] = q1_rand.mean().item()
                metrics['cql_critic_q2_rand'] = q2_rand.mean().item()
                metrics['cql_critic_q1_curr_actions'] = q1_curr_actions.mean().item()
                metrics['cql_critic_q2_curr_actions'] = q2_curr_actions.mean().item()
                metrics['cql_critic_q1_next_actions'] = q1_next_actions.mean().item()
                metrics['cql_critic_q2_next_actions'] = q2_next_actions.mean().item()
                metrics['cql_critic_q1_loss'] = min_qf1_loss.item()
                metrics['cql_critic_q2_loss'] = min_qf2_loss.item()

        # optimize encoder and critic
        self.encoder_opt.zero_grad(set_to_none=True)
        self.critic_opt.zero_grad(set_to_none=True)
        critic_loss.backward()
        self.critic_opt.step()
        self.encoder_opt.step()

        return metrics

    def update_actor(self, obs, step):
        metrics = dict()

        stddev = utils.schedule(self.stddev_schedule, step)
        dist = self.actor(obs, stddev)
        action = dist.sample(clip=self.stddev_clip)
        log_prob = dist.log_prob(action).sum(-1, keepdim=True)
        Q1, Q2 = self.critic(obs, action)
        Q = torch.min(Q1, Q2)

        actor_policy_improvement_loss = -Q.mean()
        actor_loss = actor_policy_improvement_loss

        # optimize actor
        self.actor_opt.zero_grad(set_to_none=True)
        actor_loss.backward()
        self.actor_opt.step()

        if self.use_tb:
            metrics['actor_loss'] = actor_policy_improvement_loss.item()
            metrics['actor_logprob'] = log_prob.mean().item()
            metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item()

        return metrics

    def update(self, replay_buffer, step):
        metrics = dict()

        if step % self.update_every_steps != 0:
            return metrics

        batch = next(replay_buffer)
        obs, action, reward, discount, next_obs = utils.to_torch(batch, self.device)

        # augment
        obs = self.aug(obs.float())
        next_obs = self.aug(next_obs.float())
        # encode
        obs = self.encoder(obs)
        with torch.no_grad():
            next_obs = self.encoder(next_obs)

        if self.use_tb:
            metrics['batch_reward'] = reward.mean().item()

        # update critic
        metrics.update(self.update_critic(obs, action, reward, discount, next_obs, step))

        # update actor
        metrics.update(self.update_actor(obs.detach(), step))

        # update critic target
        utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau)

        return metrics