File size: 9,384 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import copy
import datetime
import io
import pathlib
import pickle
import uuid

import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
from tensorflow_probability import distributions as tfd


class AttrDict(dict):
    __setattr__ = dict.__setitem__
    __getattr__ = dict.__getitem__


class Module(tf.Module):
    def save(self, filename):
        values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
        with pathlib.Path(filename).open('wb') as f:
            pickle.dump(values, f)

    def load(self, filename):
        with pathlib.Path(filename).open('rb') as f:
            values = pickle.load(f)
        tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)

    def get(self, name, ctor, *args, **kwargs):
        # Create or get layer by name to avoid mentioning it in the constructor.
        if not hasattr(self, '_modules'):
            self._modules = {}
        if name not in self._modules:
            self._modules[name] = ctor(*args, **kwargs)
        return self._modules[name]


def video_summary(name, video, step=None, fps=20):
    name = name if isinstance(name, str) else name.decode('utf-8')
    if np.issubdtype(video.dtype, np.floating):
        video = np.clip(255 * video, 0, 255).astype(np.uint8)
    B, T, H, W, C = video.shape
    try:
        frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
        summary = tf1.Summary()
        image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
        image.encoded_image_string = encode_gif(frames, fps)
        summary.value.add(tag=name + '/gif', image=image)
        tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
    except (IOError, OSError) as e:
        print('GIF summaries require ffmpeg in $PATH.', e)
        frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
        tf.summary.image(name + '/grid', frames, step)


def encode_gif(frames, fps):
    from subprocess import Popen, PIPE
    h, w, c = frames[0].shape
    pxfmt = {1: 'gray', 3: 'rgb24'}[c]
    cmd = ' '.join([
        f'ffmpeg -y -f rawvideo -vcodec rawvideo',
        f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
        f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
        f'-r {fps:.02f} -f gif -'])
    proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
    for image in frames:
        proc.stdin.write(image.tostring())
    out, err = proc.communicate()
    if proc.returncode:
        raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
    del proc
    return out


def simulate(agent, envs, steps=0, episodes=0, state=None):
    # Initialize or unpack simulation state.
    if state is None:
        step, episode = 0, 0
        done = np.ones(len(envs), np.bool)
        length = np.zeros(len(envs), np.int32)
        obs = [None] * len(envs)
        agent_state = None
    else:
        step, episode, done, length, obs, agent_state = state
    while (steps and step < steps) or (episodes and episode < episodes):
        # Reset envs if necessary.
        if done.any():
            indices = [index for index, d in enumerate(done) if d]
            promises = [envs[i].reset(blocking=False) for i in indices]
            for index, promise in zip(indices, promises):
                obs[index] = promise()
        # Step agents.
        obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
        action, agent_state = agent(obs, done, agent_state)
        action = np.array(action)
        assert len(action) == len(envs)
        # Step envs.
        promises = [e.step(a, blocking=False) for e, a in zip(envs, action)]
        obs, _, done = zip(*[p()[:3] for p in promises])
        obs = list(obs)
        done = np.stack(done)
        episode += int(done.sum())
        length += 1
        step += (done * length).sum()
        length *= (1 - done)
    # Return new state to allow resuming the simulation.
    return step - steps, episode - episodes, done, length, obs, agent_state


def count_episodes(directory):
    filenames = directory.glob('*.npz')
    lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames]
    episodes, steps = len(lengths), sum(lengths)
    return episodes, steps


def save_episodes(directory, episodes):
    directory = pathlib.Path(directory).expanduser()
    directory.mkdir(parents=True, exist_ok=True)
    timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
    for episode in episodes:
        identifier = str(uuid.uuid4().hex)
        length = len(episode['reward'])
        filename = directory / f'{timestamp}-{identifier}-{length}.npz'
        with io.BytesIO() as f1:
            np.savez_compressed(f1, **episode)
            f1.seek(0)
            with filename.open('wb') as f2:
                f2.write(f1.read())


def load_episodes(directory, rescan, length=None, balance=False, seed=0, load_episodes=1000):
    directory = pathlib.Path(directory).expanduser()
    random = np.random.RandomState(seed)
    filenames = list(directory.glob('*.npz'))
    load_episodes = min(len(filenames), load_episodes)
    if load_episodes is None:
        load_episodes = int(count_episodes(directory)[0] / 20)

    while True:
        cache = {}
        for filename in random.choice(list(directory.glob('*.npz')),
                                      load_episodes,
                                      replace=False):
            try:
                with filename.open('rb') as f:
                    episode = np.load(f)
                    episode = {k: episode[k] for k in episode.keys() if k not in ['image_128']}
                    # episode['reward'] = copy.deepcopy(episode['success'])
                    if 'discount' not in episode:
                        episode['discount'] = np.where(episode['is_terminal'], 0., 1.)
            except Exception as e:
                print(f'Could not load episode: {e}')
                continue
            cache[filename] = episode

        keys = list(cache.keys())
        for index in random.choice(len(keys), rescan):
            episode = copy.deepcopy(cache[keys[index]])
            if length:
                total = len(next(iter(episode.values())))
                available = total - length
                if available < 0:
                    for key in episode.keys():
                        shape = episode[key].shape
                        episode[key] = np.concatenate([episode[key],
                                                       np.zeros([abs(available)] + list(shape[1:]))],
                                                      axis=0)
                    episode['mask'] = np.ones(length)
                    episode['mask'][available:] = 0.0
                elif available > 0:
                    if balance:
                        index = min(random.randint(0, total), available)
                    else:
                        index = int(random.randint(0, available))
                    episode = {k: v[index: index + length] for k, v in episode.items()}
                    episode['mask'] = np.ones(length)
                else:
                    episode['mask'] = np.ones_like(episode['reward'])
            else:
                episode['mask'] = np.ones_like(episode['reward'])
            yield episode


class Adam(tf.Module):
    def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'):
        self._name = name
        self._modules = modules
        self._clip = clip
        self._wd = wd
        self._wdpattern = wdpattern
        self._opt = tf.optimizers.Adam(lr)

    @property
    def variables(self):
        return self._opt.variables()

    def __call__(self, tape, loss):
        variables = [module.variables for module in self._modules]
        self._variables = tf.nest.flatten(variables)
        assert len(loss.shape) == 0, loss.shape
        grads = tape.gradient(loss, self._variables)
        norm = tf.linalg.global_norm(grads)
        if self._clip:
            grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
        self._opt.apply_gradients(zip(grads, self._variables))
        return norm


def args_type(default):
    if isinstance(default, bool):
        return lambda x: bool(['False', 'True'].index(x))
    if isinstance(default, int):
        return lambda x: float(x) if ('e' in x or '.' in x) else int(x)
    if isinstance(default, pathlib.Path):
        return lambda x: pathlib.Path(x).expanduser()
    return type(default)


def static_scan(fn, inputs, start, reverse=False):
    last = start
    outputs = [[] for _ in tf.nest.flatten(start)]
    indices = range(len(tf.nest.flatten(inputs)[0]))
    if reverse:
        indices = reversed(indices)
    for index in indices:
        inp = tf.nest.map_structure(lambda x: x[index], inputs)
        last = fn(last, inp)
        [o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
    if reverse:
        outputs = [list(reversed(x)) for x in outputs]
    outputs = [tf.stack(x, 0) for x in outputs]
    return tf.nest.pack_sequence_as(start, outputs)


def _mnd_sample(self, sample_shape=(), seed=None, name='sample'):
    return tf.random.normal(
        tuple(sample_shape) + tuple(self.event_shape),
        self.mean(), self.stddev(), self.dtype, seed, name)


tfd.MultivariateNormalDiag.sample = _mnd_sample