sep28k / sep28k.py
yangwang825's picture
Update sep28k.py
932c87b verified
# coding=utf-8
"""SEP-28K dataset."""
import os
import gzip
import shutil
import urllib.request
from typing import List
from pathlib import Path
import librosa
import datasets
import pandas as pd
from rich import print
from tqdm.auto import tqdm
SAMPLING_RATE = 16_000
CLASSES = ['block', 'prolongation', 'sound_rep', 'word_rep', 'interjection', 'no_dysfluencies']
class SEP28KConfig(datasets.BuilderConfig):
"""BuilderConfig for SEP-28K."""
def __init__(self, features, **kwargs):
super(SEP28KConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs)
self.features = features
class SEP28K(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
SEP28KConfig(
features=datasets.Features(
{
"audio": datasets.Audio(sampling_rate=SAMPLING_RATE),
# "speaker": datasets.Value("string"),
# "duration": datasets.Value("int32"),
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"stutter": datasets.Sequence(datasets.Value("string")),
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)),
}
),
name="sep28k",
description="",
),
SEP28KConfig(
features=datasets.Features(
{
"audio": datasets.Audio(sampling_rate=SAMPLING_RATE),
# "speaker": datasets.Value("string"),
# "duration": datasets.Value("int32"),
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"stutter": datasets.Sequence(datasets.Value("string")),
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)),
}
),
name="fluencybank",
description="",
),
]
DEFAULT_CONFIG_NAME = "sep28k"
def __init__(
self,
cache_dir = None,
dataset_name = None,
config_name = None,
hash = None,
base_path = None,
info = None,
features = None,
token = None,
repo_id = None,
data_files = None,
data_dir = None,
storage_options = None,
writer_batch_size = None,
**config_kwargs
):
super().__init__(
cache_dir,
dataset_name,
config_name,
hash,
base_path,
info,
features,
token,
repo_id,
data_files,
data_dir,
storage_options,
writer_batch_size,
**config_kwargs
)
def _info(self):
return datasets.DatasetInfo(
description="SEP-28K dataset",
features=self.config.features,
)
def _split_generators(self, dl_manager):
if dl_manager.manual_dir is None:
from datasets.config import HF_DATASETS_CACHE
data_dir = os.path.join(HF_DATASETS_CACHE, "downloads")
print(f'`data_dir` is None, set the path to {data_dir}')
else:
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(os.path.join(data_dir, 'clips')):
download_file(
'https://huggingface.co/datasets/confit/sep-28k/resolve/main/archive.zip',
dest=os.path.join(data_dir, 'archive.zip'),
unpack=True,
write_permissions=True
)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir}),
]
def _generate_examples(self, data_dir):
"""Generate examples from SEP-28K"""
if self.config.name == 'sep28k':
metadata_df = pd.read_csv(os.path.join(data_dir, 'SEP-28k_labels.csv'))
elif self.config.name == 'fluencybank':
metadata_df = pd.read_csv(os.path.join(data_dir, 'fluencybank_labels.csv'))
metadata_df = metadata_df[metadata_df['Unsure'] == 0].reset_index(drop=True)
print(metadata_df)
threshold = 2 # https://arxiv.org/pdf/2102.12394
_mapping = {}
for idx, row in metadata_df.iterrows():
filename = f"{row['Show']}_{row['EpId']}_{row['ClipId']}"
start = row['Start']
end = row['Stop']
block = 1 if row['Block'] >= threshold else 0
prolongation = 1 if row['Prolongation'] >= threshold else 0
sound_rep = 1 if row['SoundRep'] >= threshold else 0
word_rep = 1 if row['WordRep'] >= threshold else 0
interjection = 1 if row['Interjection'] >= threshold else 0
# no_stuttered_words = 1 if row['NoStutteredWords'] >= 1 else 0
dysfluencies = sum([prolongation, block, sound_rep, word_rep, interjection])
no_dysfluencies = 1 if dysfluencies == 0 else 0
stutter = []
if block == 1:
stutter.append('block')
if prolongation == 1:
stutter.append('prolongation')
if sound_rep == 1:
stutter.append('sound_rep')
if word_rep == 1:
stutter.append('word_rep')
if interjection == 1:
stutter.append('interjection')
if no_dysfluencies == 1:
stutter.append('no_dysfluencies')
_mapping[filename] = {
'filename': filename,
'start': start,
'end': end,
'block': block,
'prolongation': prolongation,
'sound_rep': sound_rep,
'word_rep': word_rep,
'interjection': interjection,
'no_dysfluencies': no_dysfluencies,
'stutter': stutter,
}
# Iterating the contents of the data to extract the relevant information
extensions = ['.wav']
_, wav_paths = fast_scandir(data_dir, extensions, recursive=True)
for guid, wav_path in enumerate(wav_paths):
# duration = librosa.get_duration(path=wav_path)
# if duration <= 0:
# continue
try:
fileid = Path(wav_path).stem
info = _mapping[fileid]
yield guid, {
"id": str(guid),
"audio": wav_path,
"stutter": info['stutter'],
"label": info['stutter'],
"start": start,
"end": end,
}
except:
continue
def fast_scandir(path: str, extensions: List[str], recursive: bool = False):
# Scan files recursively faster than glob
# From github.com/drscotthawley/aeiou/blob/main/aeiou/core.py
subfolders, files = [], []
try: # hope to avoid 'permission denied' by this try
for f in os.scandir(path):
try: # 'hope to avoid too many levels of symbolic links' error
if f.is_dir():
subfolders.append(f.path)
elif f.is_file():
if os.path.splitext(f.name)[1].lower() in extensions:
files.append(f.path)
except Exception:
pass
except Exception:
pass
if recursive:
for path in list(subfolders):
sf, f = fast_scandir(path, extensions, recursive=recursive)
subfolders.extend(sf)
files.extend(f) # type: ignore
return subfolders, files
def download_file(
source,
dest,
unpack=False,
dest_unpack=None,
replace_existing=False,
write_permissions=False,
):
"""Downloads the file from the given source and saves it in the given
destination path.
Arguments
---------
source : path or url
Path of the source file. If the source is an URL, it downloads it from
the web.
dest : path
Destination path.
unpack : bool
If True, it unpacks the data in the dest folder.
dest_unpack: path
Path where to store the unpacked dataset
replace_existing : bool
If True, replaces the existing files.
write_permissions: bool
When set to True, all the files in the dest_unpack directory will be granted write permissions.
This option is active only when unpack=True.
"""
class DownloadProgressBar(tqdm):
"""DownloadProgressBar class."""
def update_to(self, b=1, bsize=1, tsize=None):
"""Needed to support multigpu training."""
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
# Create the destination directory if it doesn't exist
dest_dir = Path(dest).resolve().parent
dest_dir.mkdir(parents=True, exist_ok=True)
if "http" not in source:
shutil.copyfile(source, dest)
elif not os.path.isfile(dest) or (
os.path.isfile(dest) and replace_existing
):
print(f"Downloading {source} to {dest}")
with DownloadProgressBar(
unit="B",
unit_scale=True,
miniters=1,
desc=source.split("/")[-1],
) as t:
urllib.request.urlretrieve(
source, filename=dest, reporthook=t.update_to
)
else:
print(f"{dest} exists. Skipping download")
# Unpack if necessary
if unpack:
if dest_unpack is None:
dest_unpack = os.path.dirname(dest)
print(f"Extracting {dest} to {dest_unpack}")
# shutil unpack_archive does not work with tar.gz files
if (
source.endswith(".tar.gz")
or source.endswith(".tgz")
or source.endswith(".gz")
):
out = dest.replace(".gz", "")
with gzip.open(dest, "rb") as f_in:
with open(out, "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
else:
shutil.unpack_archive(dest, dest_unpack)
if write_permissions:
set_writing_permissions(dest_unpack)
def set_writing_permissions(folder_path):
"""
This function sets user writing permissions to all the files in the given folder.
Arguments
---------
folder_path : folder
Folder whose files will be granted write permissions.
"""
for root, dirs, files in os.walk(folder_path):
for file_name in files:
file_path = os.path.join(root, file_name)
# Set writing permissions (mode 0o666) to the file
os.chmod(file_path, 0o666)