# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """N-BaIoT dataset loader.""" import os import rarfile import numpy as np import pandas as pd import datasets _CITATION = """\ @article{DBLP:journals/corr/abs-1805-03409, author = {Yair Meidan and Michael Bohadana and Yael Mathov and Yisroel Mirsky and Dominik Breitenbacher and Asaf Shabtai and Yuval Elovici}, title = {N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders}, journal = {CoRR}, volume = {abs/1805.03409}, year = {2018}, url = {http://arxiv.org/abs/1805.03409}, eprinttype = {arXiv}, eprint = {1805.03409}, timestamp = {Mon, 13 Aug 2018 16:49:04 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1805-03409.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _DESCRIPTION = """\ An intrusion detection dataset that focuses on IoT botnet attacks. """ _HOMEPAGE = "https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot" _LICENSE = "Creative Commons Attribution 4.0 International (CC BY 4.0) license" _URL = 'https://archive.ics.uci.edu/static/public/442/detection+of+iot+botnet+attacks+n+baiot.zip' _ATTACK_NAMES = ['benign_traffic', 'combo', 'junk', 'mirai-ack', 'mirai-scan', 'mirai-syn', 'mirai-udp', 'mirai-udpplain', 'scan', 'tcp', 'udp'] _DEVICE_NAMES = [ "Danmini_Doorbell", "Ecobee_Thermostat", "Ennio_Doorbell", "Philips_B120N10_Baby_Monitor", "Provision_PT_737E_Security_Camera", "Provision_PT_838_Security_Camera", "Samsung_SNH_1011_N_Webcam", "SimpleHome_XCS7_1002_WHT_Security_Camera", "SimpleHome_XCS7_1003_WHT_Security_Camera" ] class NBAIOTDataset(datasets.GeneratorBasedBuilder): """N-BaIoT intrusion detection.""" VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=datasets.Features({ "features": datasets.Sequence(feature=datasets.Value("float32"), length=115), "attack": datasets.ClassLabel(len(_ATTACK_NAMES), names=_ATTACK_NAMES), "device": datasets.ClassLabel(len(_DEVICE_NAMES), names=_DEVICE_NAMES), }), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir, "split": "test" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): for device in _DEVICE_NAMES: # First load in the benign traffic all_data = pd.read_csv(f"{filepath}/{device}/benign_traffic.csv").values attacks = np.repeat("benign_traffic", len(all_data)) # Then the standard attacks attacks_rar = rarfile.RarFile(f"{filepath}/{device}/gafgyt_attacks.rar") for fileinfo in attacks_rar.infolist(): with attacks_rar.open(fileinfo.filename) as f: data = pd.read_csv(f).values attacks = np.concatenate((attacks, np.repeat(f.name.replace(".csv", ""), len(data)))) all_data = np.concatenate((all_data, data)) # And, if present, the Mirai attacks if device not in ["Ennio_Doorbell", "Samsung_SNH_1011_N_Webcam"]: mirai_rar = rarfile.RarFile(f"{filepath}/{device}/mirai_attacks.rar") for fileinfo in mirai_rar.infolist(): with mirai_rar.open(fileinfo.filename) as f: data = pd.read_csv(f).values attacks = np.concatenate((attacks, np.repeat("mirai-" + f.name.replace(".csv", ""), len(data)))) all_data = np.concatenate((all_data, data)) # Create the train-test split rng = np.random.default_rng(round(np.pi**(np.pi * 100))) train = rng.uniform(size=len(all_data)) < 0.85 all_data = all_data[train if split == "train" else ~train] # Finally yield the data for key, (data, attack) in enumerate(zip(all_data, attacks)): yield key, { "features": data, "attack": attack, "device": device, }