clip-oscope commited on
Commit
5534fef
·
verified ·
1 Parent(s): 101e726

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -3
README.md CHANGED
@@ -1,3 +1,66 @@
1
- ---
2
- license: cc-by-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ task_categories:
4
+ - zero-shot-classification
5
+ language:
6
+ - en
7
+ pretty_name: ' simco-comco'
8
+ size_categories:
9
+ - 10K<n<100K
10
+ ---
11
+ # **ComCo & SimCo Datasets**
12
+
13
+ ## **Overview**
14
+ This repository contains two datasets, **ComCo** and **SimCo**, designed for evaluating multi-object representation in Vision-Language Models (VLMs). These datasets provide controlled environments for analyzing model biases, object recognition, and compositionality in multi-object scenarios.
15
+
16
+ - **ComCo**: Composed of real-world objects derived from the COCO dataset.
17
+ - **SimCo**: Contains simple geometric shapes in structured multi-object settings.
18
+
19
+ ---
20
+
21
+ ## **ComCo Dataset**
22
+ The **ComCo** (Complex COCO Objects) dataset consists of images featuring **2 to 5 objects** from the **COCO dataset**. Each zip file contains different arrangements of objects with variations in:
23
+ - **Size** (e.g., large vs. small objects)
24
+ - **Position** (top-left, middle, bottom-right, etc.)
25
+
26
+ ComCo is specifically designed to test VLMs on real-world objects, allowing precise control over object placement and ensuring a systematic evaluation of compositional understanding.
27
+
28
+ ## **SimCo Dataset**
29
+ The **SimCo** (Simple Compositional Objects) dataset consists of synthetic images featuring **geometric shapes** such as:
30
+ - **Cubes**
31
+ - **Spheres**
32
+ - **Cylinders**
33
+ - **Triangles**
34
+ - **Pentagons**
35
+
36
+ SimCo is used to **isolate model biases** by removing real-world semantics, enabling controlled evaluation of how VLMs process object interactions purely based on **size, shape, and position**.
37
+
38
+ ## **Usage**
39
+ These datasets are useful for:
40
+ - **Analyzing VLM biases** (e.g., preference for larger objects)
41
+ - **Compositionality testing** (how models handle multiple objects in images)
42
+ - **Zero-shot & fine-tuning tasks** (evaluating robustness of vision-language embeddings)
43
+
44
+ ### **Loading with Hugging Face `datasets` Library**
45
+ You can load the dataset directly using:
46
+ ```python
47
+ from datasets import load_dataset
48
+
49
+ # Load ComCo dataset
50
+ comco = load_dataset("clip-oscope/simco-comco", data_dir="ComCo")
51
+
52
+ # Load SimCo dataset
53
+ simco = load_dataset("clip-oscope/simco-comco", data_dir="SimCo")
54
+
55
+ ```
56
+ ## **Citation**
57
+ If you use this dataset in your research, please cite:
58
+ ```
59
+ @inproceedings{abbasi2025clip,
60
+ title={CLIP Under the Microscope: A Fine-Grained Analysis of Multi-Object Representation},
61
+ author={Abbasi, Reza and Nazari, Ali and Sefid, Aminreza and Banayeeanzade, Mohammadali and Rohban, Mohammad Hossein and Soleymani Baghshah, Mahdieh},
62
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
63
+ year={2025}
64
+ }
65
+
66
+ ```