import os import zarr import numpy as np import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @misc{buckman2024, author = {Buckman, Jacob}, publisher = {Manifest AI}, title = {LongCrawl64: {A} {Long-Context} {Natural-Language} {Dataset}}, date = {2024-08-14}, langid = {en} } """ _DESCRIPTION = """\ LongCrawl64 is a dataset for research on architectures and algorithms for long-context modeling. It consists of 6,661,465 pre-tokenized documents, each of which is 65,536 tokens long, for a total token count of 435 billion. The dataset is preprocessed with truncation to exactly 64 KiT, shuffling along document dimension, and rolling each document randomly along sequence dimension. """ class LongCrawl64Config(datasets.BuilderConfig): """BuilderConfig for LongCrawl64.""" def __init__(self, context_size=65536, **kwargs): """BuilderConfig for LongCrawl64. Args: context_size: The size of context window to use (default is full 64KiT) **kwargs: keyword arguments forwarded to super. """ super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.context_size = context_size class LongCrawl64(datasets.GeneratorBasedBuilder): """LongCrawl64 dataset.""" BUILDER_CONFIGS = [ LongCrawl64Config( name="default", description="Default configuration with full 64KiT context", ), LongCrawl64Config( name="16k", description="16K context window configuration", context_size=16384, ), ] DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence( datasets.Value("int32"), length=self.config.context_size ), "input_ids": datasets.Sequence( datasets.Value("int32"), length=self.config.context_size ), } ), supervised_keys=None, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # Download the data files from HuggingFace Hub data_files = {"train": "data/train.zarr", "validation": "data/heldout.zarr"} downloaded_files = dl_manager.download_and_extract(data_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "zarr_path": downloaded_files["train"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "zarr_path": downloaded_files["validation"], }, ), ] def _generate_examples(self, zarr_path): """Yields examples. Reads data from the zarr store in chunks and yields examples according to the specified context size. """ logger.info(f"Loading zarr array from {zarr_path}") z = zarr.open(zarr_path, mode="r") # Get the first array in the zarr store (0.0) data = z["0.0"] # Calculate number of complete sequences we can get from each document seqs_per_doc = data.shape[1] // self.config.context_size for doc_idx in range(data.shape[0]): # Read the document data doc_data = data[doc_idx] for seq_idx in range(seqs_per_doc): # Extract sequence start = seq_idx * self.config.context_size end = start + self.config.context_size sequence = doc_data[start:end] # Create input_ids by shifting sequence input_ids = np.roll(sequence, 1) input_ids[0] = 50256 # EOT token as per the paper yield f"{doc_idx}-{seq_idx}", { "tokens": sequence.tolist(), "input_ids": input_ids.tolist(), }