""" Generate resized ImageNet-100 dataset. """ from argparse import ArgumentParser from functools import partial from pathlib import Path from datasets import load_dataset from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import resize SCRIPT = str(Path(__file__).parent / "imagenet-100.py") def transforms(examples, size: int = 160): examples["image"] = [ resize(image, size, interpolation=InterpolationMode.BICUBIC) for image in examples["image"] ] return examples if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--outdir", "-o", type=str, default="cache") parser.add_argument("--size", "-s", type=int, default=160) parser.add_argument("--num-proc", "-n", type=int, default=8) args = parser.parse_args() dataset = load_dataset(SCRIPT) dataset = dataset.map( partial(transforms, size=args.size), batched=True, batch_size=256, num_proc=args.num_proc, ) print(dataset) print(dataset["validation"][0]) outdir = Path(args.outdir) / f"imagenet-100_{args.size}" dataset.save_to_disk(outdir, num_proc=args.num_proc)