cjfcsjt commited on
Commit
34b3d9a
·
verified ·
1 Parent(s): 17e80c6

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /root/workspace/digirl/outputs/minicpmv_pt1000
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "MiniCPMV",
5
+ "parent_library": "transformers_modules.openbmb.MiniCPM-V-2_6.4e4be000cd81feda8b96d14b53f1791b4010b038.modeling_minicpmv"
6
+ },
7
+ "base_model_name_or_path": "/root/workspace/digirl/outputs/minicpmv_pt1000",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "embed_tokens",
22
+ "resampler",
23
+ "vpm"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 64,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": "llm\\..*layers\\.\\d+\\.self_attn\\.(q_proj|k_proj|v_proj|o_proj)",
30
+ "task_type": null,
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4df191fe5e60c97242d7ec74903dbce7f0e093132c0f4ffef4dac7117178eeb
3
+ size 2140796552
added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151651,
3
+ "</image>": 151647,
4
+ "</image_id>": 151659,
5
+ "</point>": 151655,
6
+ "</quad>": 151653,
7
+ "</ref>": 151649,
8
+ "</slice>": 151657,
9
+ "<box>": 151650,
10
+ "<image>": 151646,
11
+ "<image_id>": 151658,
12
+ "<point>": 151654,
13
+ "<quad>": 151652,
14
+ "<ref>": 151648,
15
+ "<slice>": 151656,
16
+ "<|endoftext|>": 151643,
17
+ "<|im_end|>": 151645,
18
+ "<|im_start|>": 151644,
19
+ "<|reserved_special_token_0|>": 151660,
20
+ "<|reserved_special_token_1|>": 151661,
21
+ "<|reserved_special_token_2|>": 151662,
22
+ "<|reserved_special_token_3|>": 151663,
23
+ "<|reserved_special_token_4|>": 151664,
24
+ "<|reserved_special_token_5|>": 151665
25
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step150
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7a08f4e7ee1e4f025bb90ecd215d01a19c1932033153c3bfa18632d82f8c644
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ebd49c8029a26c79ffc307273a9913225a2be23eac594826ebf368b5c731bb2
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ec1bf915187c7cd290cc29bdf2b4cf1df5dfef3a44efdd2711b903a864cfd60
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4123c08c5b84f0dc1f5ec7b0bff5bdfdc97a5b8498331986e370d4fa7cc0ac6d
3
+ size 15024
special_tokens_map.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<image>",
4
+ "</image>",
5
+ "<ref>",
6
+ "</ref>",
7
+ "<box>",
8
+ "</box>",
9
+ "<quad>",
10
+ "</quad>",
11
+ "<point>",
12
+ "</point>",
13
+ "<slice>",
14
+ "</slice>",
15
+ "<image_id>",
16
+ "</image_id>",
17
+ "<|reserved_special_token_0|>",
18
+ "<|reserved_special_token_1|>",
19
+ "<|reserved_special_token_2|>",
20
+ "<|reserved_special_token_3|>",
21
+ "<|reserved_special_token_4|>",
22
+ "<|reserved_special_token_5|>"
23
+ ],
24
+ "bos_token": {
25
+ "content": "<|im_start|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "eos_token": {
32
+ "content": "<|im_end|>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ },
38
+ "pad_token": {
39
+ "content": "<|endoftext|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false
44
+ },
45
+ "unk_token": {
46
+ "content": "<unk>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false
51
+ }
52
+ }
tokenization_minicpmv_fast.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.qwen2 import Qwen2TokenizerFast
2
+
3
+
4
+ class MiniCPMVTokenizerFast(Qwen2TokenizerFast):
5
+ def __init__(self, **kwargs):
6
+ super().__init__(**kwargs)
7
+ self.im_start = "<image>"
8
+ self.im_end = "</image>"
9
+ self.ref_start = "<ref>"
10
+ self.ref_end = "</ref>"
11
+ self.box_start = "<box>"
12
+ self.box_end = "</box>"
13
+ self.quad_start = "<quad>"
14
+ self.quad_end = "</quad>"
15
+ self.slice_start = "<slice>"
16
+ self.slice_end = "</slice>"
17
+ self.im_id_start = "<image_id>"
18
+ self.im_id_end = "</image_id>"
19
+
20
+ @property
21
+ def eos_id(self):
22
+ return self.eos_token_id
23
+
24
+ @property
25
+ def bos_id(self):
26
+ return self.bos_token_id
27
+
28
+ @property
29
+ def unk_id(self):
30
+ return self.unk_token_id
31
+
32
+ @property
33
+ def im_start_id(self):
34
+ return self.convert_tokens_to_ids(self.im_start)
35
+
36
+ @property
37
+ def im_end_id(self):
38
+ return self.convert_tokens_to_ids(self.im_end)
39
+
40
+ @property
41
+ def slice_start_id(self):
42
+ return self.convert_tokens_to_ids(self.slice_start)
43
+
44
+ @property
45
+ def slice_end_id(self):
46
+ return self.convert_tokens_to_ids(self.slice_end)
47
+
48
+ @property
49
+ def im_id_start_id(self):
50
+ return self.convert_tokens_to_ids(self.im_id_start)
51
+
52
+ @property
53
+ def im_id_end_id(self):
54
+ return self.convert_tokens_to_ids(self.im_id_end)
55
+
56
+ @property
57
+ def newline_id(self):
58
+ return self.convert_tokens_to_ids('\n')
59
+
60
+ @staticmethod
61
+ def escape(text: str) -> str:
62
+ return text
63
+
64
+ @staticmethod
65
+ def unescape(text: str) -> str:
66
+ return text
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "128244": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151643": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151644": {
21
+ "content": "<|im_start|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151645": {
29
+ "content": "<|im_end|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151646": {
37
+ "content": "<image>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151647": {
45
+ "content": "</image>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151648": {
53
+ "content": "<ref>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151649": {
61
+ "content": "</ref>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151650": {
69
+ "content": "<box>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151651": {
77
+ "content": "</box>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151652": {
85
+ "content": "<quad>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151653": {
93
+ "content": "</quad>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151654": {
101
+ "content": "<point>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151655": {
109
+ "content": "</point>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151656": {
117
+ "content": "<slice>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "151657": {
125
+ "content": "</slice>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "151658": {
133
+ "content": "<image_id>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "151659": {
141
+ "content": "</image_id>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "151660": {
149
+ "content": "<|reserved_special_token_0|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "151661": {
157
+ "content": "<|reserved_special_token_1|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "151662": {
165
+ "content": "<|reserved_special_token_2|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "151663": {
173
+ "content": "<|reserved_special_token_3|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "151664": {
181
+ "content": "<|reserved_special_token_4|>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "151665": {
189
+ "content": "<|reserved_special_token_5|>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ }
196
+ },
197
+ "additional_special_tokens": [
198
+ "<image>",
199
+ "</image>",
200
+ "<ref>",
201
+ "</ref>",
202
+ "<box>",
203
+ "</box>",
204
+ "<quad>",
205
+ "</quad>",
206
+ "<point>",
207
+ "</point>",
208
+ "<slice>",
209
+ "</slice>",
210
+ "<image_id>",
211
+ "</image_id>",
212
+ "<|reserved_special_token_0|>",
213
+ "<|reserved_special_token_1|>",
214
+ "<|reserved_special_token_2|>",
215
+ "<|reserved_special_token_3|>",
216
+ "<|reserved_special_token_4|>",
217
+ "<|reserved_special_token_5|>"
218
+ ],
219
+ "auto_map": {
220
+ "AutoTokenizer": [
221
+ "tokenization_qwen2.Qwen2Tokenizer",
222
+ "tokenization_minicpmv_fast.MiniCPMVTokenizerFast"
223
+ ]
224
+ },
225
+ "bos_token": "<|im_start|>",
226
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
227
+ "clean_up_tokenization_spaces": false,
228
+ "eos_token": "<|im_end|>",
229
+ "errors": "replace",
230
+ "model_max_length": 1000000000000000019884624838656,
231
+ "pad_token": "<|endoftext|>",
232
+ "split_special_tokens": false,
233
+ "tokenizer_class": "MiniCPMVTokenizer",
234
+ "unk_token": "<unk>"
235
+ }
trainer_state.json ADDED
@@ -0,0 +1,1083 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 75.0,
5
+ "eval_steps": 1000,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.5,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 0,
15
+ "loss": 1.3402,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "grad_norm": 0.0,
21
+ "learning_rate": 0,
22
+ "loss": 1.286,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 1.5,
27
+ "grad_norm": 0.0,
28
+ "learning_rate": 0,
29
+ "loss": 1.3382,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 2.0,
34
+ "grad_norm": 6.078482627868652,
35
+ "learning_rate": 0.0,
36
+ "loss": 1.2555,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 2.5,
41
+ "grad_norm": 5.590641975402832,
42
+ "learning_rate": 1.5051499783199055e-07,
43
+ "loss": 1.2272,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 3.0,
48
+ "grad_norm": 5.590641975402832,
49
+ "learning_rate": 1.5051499783199055e-07,
50
+ "loss": 1.3339,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 3.5,
55
+ "grad_norm": 5.590641975402832,
56
+ "learning_rate": 1.5051499783199055e-07,
57
+ "loss": 1.4161,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 4.0,
62
+ "grad_norm": 11.268411636352539,
63
+ "learning_rate": 2.385606273598312e-07,
64
+ "loss": 1.362,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 4.5,
69
+ "grad_norm": 9.850939750671387,
70
+ "learning_rate": 3.010299956639811e-07,
71
+ "loss": 1.1579,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 5.0,
76
+ "grad_norm": 11.71530532836914,
77
+ "learning_rate": 3.494850021680093e-07,
78
+ "loss": 1.4335,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 5.5,
83
+ "grad_norm": 5.690868377685547,
84
+ "learning_rate": 3.8907562519182173e-07,
85
+ "loss": 1.2658,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 6.0,
90
+ "grad_norm": 10.700072288513184,
91
+ "learning_rate": 4.2254902000712834e-07,
92
+ "loss": 1.3482,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 6.5,
97
+ "grad_norm": 6.189509391784668,
98
+ "learning_rate": 4.5154499349597166e-07,
99
+ "loss": 1.3464,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 7.0,
104
+ "grad_norm": 6.247044086456299,
105
+ "learning_rate": 4.771212547196623e-07,
106
+ "loss": 1.2738,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 7.5,
111
+ "grad_norm": 6.324206829071045,
112
+ "learning_rate": 4.999999999999999e-07,
113
+ "loss": 1.2795,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 8.0,
118
+ "grad_norm": 5.119565486907959,
119
+ "learning_rate": 5.206963425791124e-07,
120
+ "loss": 1.281,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 8.5,
125
+ "grad_norm": 5.067975044250488,
126
+ "learning_rate": 5.395906230238123e-07,
127
+ "loss": 1.4589,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 9.0,
132
+ "grad_norm": 4.973406791687012,
133
+ "learning_rate": 5.569716761534182e-07,
134
+ "loss": 1.293,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 9.5,
139
+ "grad_norm": 4.727417945861816,
140
+ "learning_rate": 5.730640178391189e-07,
141
+ "loss": 1.2502,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 10.0,
146
+ "grad_norm": 4.404863357543945,
147
+ "learning_rate": 5.880456295278405e-07,
148
+ "loss": 1.2186,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 10.5,
153
+ "grad_norm": 6.084046840667725,
154
+ "learning_rate": 6.020599913279622e-07,
155
+ "loss": 1.4264,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 11.0,
160
+ "grad_norm": 4.772565841674805,
161
+ "learning_rate": 6.15224460689137e-07,
162
+ "loss": 1.2514,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 11.5,
167
+ "grad_norm": 4.340854167938232,
168
+ "learning_rate": 6.276362525516529e-07,
169
+ "loss": 1.2459,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 12.0,
174
+ "grad_norm": 3.630235433578491,
175
+ "learning_rate": 6.393768004764143e-07,
176
+ "loss": 1.0926,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 12.5,
181
+ "grad_norm": 7.564579963684082,
182
+ "learning_rate": 6.505149978319905e-07,
183
+ "loss": 1.3692,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 13.0,
188
+ "grad_norm": 4.304481029510498,
189
+ "learning_rate": 6.611096473669595e-07,
190
+ "loss": 1.0156,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 13.5,
195
+ "grad_norm": 5.493950366973877,
196
+ "learning_rate": 6.712113404111031e-07,
197
+ "loss": 1.2072,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 14.0,
202
+ "grad_norm": 3.82694411277771,
203
+ "learning_rate": 6.808639180087963e-07,
204
+ "loss": 1.0592,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 14.5,
209
+ "grad_norm": 3.7888131141662598,
210
+ "learning_rate": 6.901056208558029e-07,
211
+ "loss": 1.1043,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 15.0,
216
+ "grad_norm": 3.5746841430664062,
217
+ "learning_rate": 6.989700043360186e-07,
218
+ "loss": 1.1532,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 15.5,
223
+ "grad_norm": 4.591047286987305,
224
+ "learning_rate": 7.074866739854088e-07,
225
+ "loss": 1.2519,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 16.0,
230
+ "grad_norm": 10.526527404785156,
231
+ "learning_rate": 7.156818820794935e-07,
232
+ "loss": 1.1504,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 16.5,
237
+ "grad_norm": 4.354953289031982,
238
+ "learning_rate": 7.235790156711094e-07,
239
+ "loss": 1.098,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 17.0,
244
+ "grad_norm": 5.967930316925049,
245
+ "learning_rate": 7.311989989494779e-07,
246
+ "loss": 1.1957,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 17.5,
251
+ "grad_norm": 3.097174644470215,
252
+ "learning_rate": 7.38560627359831e-07,
253
+ "loss": 1.073,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 18.0,
258
+ "grad_norm": 3.9502739906311035,
259
+ "learning_rate": 7.456808469171361e-07,
260
+ "loss": 1.0042,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 18.5,
265
+ "grad_norm": 3.2742667198181152,
266
+ "learning_rate": 7.525749891599529e-07,
267
+ "loss": 1.004,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 19.0,
272
+ "grad_norm": 4.2321953773498535,
273
+ "learning_rate": 7.592569699389436e-07,
274
+ "loss": 1.0532,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 19.5,
279
+ "grad_norm": 4.322045803070068,
280
+ "learning_rate": 7.657394585211274e-07,
281
+ "loss": 1.0297,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 20.0,
286
+ "grad_norm": 3.5067355632781982,
287
+ "learning_rate": 7.720340221751376e-07,
288
+ "loss": 1.0541,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 20.5,
293
+ "grad_norm": 3.1070497035980225,
294
+ "learning_rate": 7.781512503836435e-07,
295
+ "loss": 0.8917,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 21.0,
300
+ "grad_norm": 3.413217067718506,
301
+ "learning_rate": 7.841008620334974e-07,
302
+ "loss": 1.0688,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 21.5,
307
+ "grad_norm": 3.413217067718506,
308
+ "learning_rate": 7.841008620334974e-07,
309
+ "loss": 0.8956,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 22.0,
314
+ "grad_norm": 31.582998275756836,
315
+ "learning_rate": 7.89891798308405e-07,
316
+ "loss": 1.1435,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 22.5,
321
+ "grad_norm": 3.2715117931365967,
322
+ "learning_rate": 7.955323035132494e-07,
323
+ "loss": 1.023,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 23.0,
328
+ "grad_norm": 3.081068754196167,
329
+ "learning_rate": 8.01029995663981e-07,
330
+ "loss": 0.9536,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 23.5,
335
+ "grad_norm": 5.033097267150879,
336
+ "learning_rate": 8.063919283598676e-07,
337
+ "loss": 1.0542,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 24.0,
342
+ "grad_norm": 3.2547528743743896,
343
+ "learning_rate": 8.116246451989502e-07,
344
+ "loss": 0.8736,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 24.5,
349
+ "grad_norm": 3.2148780822753906,
350
+ "learning_rate": 8.16734227789793e-07,
351
+ "loss": 0.8366,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 25.0,
356
+ "grad_norm": 3.271756887435913,
357
+ "learning_rate": 8.217263382430935e-07,
358
+ "loss": 0.9887,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 25.5,
363
+ "grad_norm": 3.1897552013397217,
364
+ "learning_rate": 8.266062568876716e-07,
365
+ "loss": 0.9634,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 26.0,
370
+ "grad_norm": 2.999152421951294,
371
+ "learning_rate": 8.313789158407869e-07,
372
+ "loss": 0.8479,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 26.5,
377
+ "grad_norm": 3.126117467880249,
378
+ "learning_rate": 8.360489289678585e-07,
379
+ "loss": 0.9963,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 27.0,
384
+ "grad_norm": 2.808807611465454,
385
+ "learning_rate": 8.406206186877934e-07,
386
+ "loss": 0.7693,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 27.5,
391
+ "grad_norm": 3.8470795154571533,
392
+ "learning_rate": 8.450980400142567e-07,
393
+ "loss": 0.8929,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 28.0,
398
+ "grad_norm": 4.059876918792725,
399
+ "learning_rate": 8.494850021680092e-07,
400
+ "loss": 0.9874,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 28.5,
405
+ "grad_norm": 3.1297614574432373,
406
+ "learning_rate": 8.53785088048968e-07,
407
+ "loss": 0.8148,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 29.0,
412
+ "grad_norm": 4.2221150398254395,
413
+ "learning_rate": 8.580016718173995e-07,
414
+ "loss": 0.9519,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 29.5,
419
+ "grad_norm": 3.0946404933929443,
420
+ "learning_rate": 8.621379348003944e-07,
421
+ "loss": 0.8067,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 30.0,
426
+ "grad_norm": 3.16498064994812,
427
+ "learning_rate": 8.661968799114842e-07,
428
+ "loss": 0.759,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 30.5,
433
+ "grad_norm": 3.2981464862823486,
434
+ "learning_rate": 8.701813447471218e-07,
435
+ "loss": 0.8196,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 31.0,
440
+ "grad_norm": 2.9492411613464355,
441
+ "learning_rate": 8.740940135031001e-07,
442
+ "loss": 0.8733,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 31.5,
447
+ "grad_norm": 4.684609413146973,
448
+ "learning_rate": 8.779374278362456e-07,
449
+ "loss": 0.9314,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 32.0,
454
+ "grad_norm": 2.6447761058807373,
455
+ "learning_rate": 8.817139967814684e-07,
456
+ "loss": 0.7206,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 32.5,
461
+ "grad_norm": 3.544161319732666,
462
+ "learning_rate": 8.854260058210719e-07,
463
+ "loss": 0.7301,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 33.0,
468
+ "grad_norm": 2.7136151790618896,
469
+ "learning_rate": 8.890756251918216e-07,
470
+ "loss": 0.7486,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 33.5,
475
+ "grad_norm": 3.6095616817474365,
476
+ "learning_rate": 8.926649175053833e-07,
477
+ "loss": 0.6688,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 34.0,
482
+ "grad_norm": 2.742135763168335,
483
+ "learning_rate": 8.961958447491268e-07,
484
+ "loss": 0.7577,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 34.5,
489
+ "grad_norm": 3.166233777999878,
490
+ "learning_rate": 8.996702747267907e-07,
491
+ "loss": 0.6201,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 35.0,
496
+ "grad_norm": 6.629209518432617,
497
+ "learning_rate": 9.030899869919433e-07,
498
+ "loss": 0.7546,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 35.5,
503
+ "grad_norm": 3.2534568309783936,
504
+ "learning_rate": 9.064566783214276e-07,
505
+ "loss": 0.6966,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 36.0,
510
+ "grad_norm": 2.9836554527282715,
511
+ "learning_rate": 9.097719677709341e-07,
512
+ "loss": 0.669,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 36.5,
517
+ "grad_norm": 2.8371522426605225,
518
+ "learning_rate": 9.13037401350413e-07,
519
+ "loss": 0.602,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 37.0,
524
+ "grad_norm": 3.1005606651306152,
525
+ "learning_rate": 9.162544563531181e-07,
526
+ "loss": 0.7351,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 37.5,
531
+ "grad_norm": 2.771270751953125,
532
+ "learning_rate": 9.194245453686276e-07,
533
+ "loss": 0.5892,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 38.0,
538
+ "grad_norm": 4.207065105438232,
539
+ "learning_rate": 9.225490200071283e-07,
540
+ "loss": 0.7159,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 38.5,
545
+ "grad_norm": 4.0643439292907715,
546
+ "learning_rate": 9.256291743595375e-07,
547
+ "loss": 0.6424,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 39.0,
552
+ "grad_norm": 3.463486433029175,
553
+ "learning_rate": 9.28666248215634e-07,
554
+ "loss": 0.6164,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 39.5,
559
+ "grad_norm": 3.14841890335083,
560
+ "learning_rate": 9.316614300602277e-07,
561
+ "loss": 0.5615,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 40.0,
566
+ "grad_norm": 2.958975076675415,
567
+ "learning_rate": 9.346158598654879e-07,
568
+ "loss": 0.5521,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 40.5,
573
+ "grad_norm": 2.7486228942871094,
574
+ "learning_rate": 9.375306316958498e-07,
575
+ "loss": 0.5937,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 41.0,
580
+ "grad_norm": 2.736597776412964,
581
+ "learning_rate": 9.404067961403955e-07,
582
+ "loss": 0.5238,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 41.5,
587
+ "grad_norm": 2.9119350910186768,
588
+ "learning_rate": 9.432453625862408e-07,
589
+ "loss": 0.5296,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 42.0,
594
+ "grad_norm": 3.870023727416992,
595
+ "learning_rate": 9.4604730134524e-07,
596
+ "loss": 0.5716,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 42.5,
601
+ "grad_norm": 3.2765142917633057,
602
+ "learning_rate": 9.488135456452205e-07,
603
+ "loss": 0.597,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 43.0,
608
+ "grad_norm": 3.575230598449707,
609
+ "learning_rate": 9.515449934959715e-07,
610
+ "loss": 0.5601,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 43.5,
615
+ "grad_norm": 3.2691493034362793,
616
+ "learning_rate": 9.542425094393247e-07,
617
+ "loss": 0.5662,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 44.0,
622
+ "grad_norm": 2.8934061527252197,
623
+ "learning_rate": 9.569069261918583e-07,
624
+ "loss": 0.5026,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 44.5,
629
+ "grad_norm": 3.517810821533203,
630
+ "learning_rate": 9.59539046188037e-07,
631
+ "loss": 0.5107,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 45.0,
636
+ "grad_norm": 3.1376760005950928,
637
+ "learning_rate": 9.621396430309406e-07,
638
+ "loss": 0.5166,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 45.5,
643
+ "grad_norm": 3.4940109252929688,
644
+ "learning_rate": 9.647094628571462e-07,
645
+ "loss": 0.4549,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 46.0,
650
+ "grad_norm": 6.771224498748779,
651
+ "learning_rate": 9.672492256217836e-07,
652
+ "loss": 0.4991,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 46.5,
657
+ "grad_norm": 4.691510200500488,
658
+ "learning_rate": 9.69759626309309e-07,
659
+ "loss": 0.4521,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 47.0,
664
+ "grad_norm": 3.1397156715393066,
665
+ "learning_rate": 9.722413360750842e-07,
666
+ "loss": 0.4287,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 47.5,
671
+ "grad_norm": 3.4504847526550293,
672
+ "learning_rate": 9.74695003322456e-07,
673
+ "loss": 0.3875,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 48.0,
678
+ "grad_norm": 2.7338361740112305,
679
+ "learning_rate": 9.771212547196622e-07,
680
+ "loss": 0.44,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 48.5,
685
+ "grad_norm": 4.007640838623047,
686
+ "learning_rate": 9.795206961605466e-07,
687
+ "loss": 0.3561,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 49.0,
692
+ "grad_norm": 3.637798309326172,
693
+ "learning_rate": 9.818939136727774e-07,
694
+ "loss": 0.4562,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 49.5,
699
+ "grad_norm": 4.988349914550781,
700
+ "learning_rate": 9.842414742769674e-07,
701
+ "loss": 0.4038,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 50.0,
706
+ "grad_norm": 3.512204885482788,
707
+ "learning_rate": 9.865639267998492e-07,
708
+ "loss": 0.3882,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 50.5,
713
+ "grad_norm": 2.9533920288085938,
714
+ "learning_rate": 9.888618026444236e-07,
715
+ "loss": 0.3843,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 51.0,
720
+ "grad_norm": 2.7523856163024902,
721
+ "learning_rate": 9.91135616519784e-07,
722
+ "loss": 0.3811,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 51.5,
727
+ "grad_norm": 6.668997764587402,
728
+ "learning_rate": 9.933858671331222e-07,
729
+ "loss": 0.4223,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 52.0,
734
+ "grad_norm": 3.053255319595337,
735
+ "learning_rate": 9.956130378462473e-07,
736
+ "loss": 0.3066,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 52.5,
741
+ "grad_norm": 3.2109737396240234,
742
+ "learning_rate": 9.978175972987748e-07,
743
+ "loss": 0.3446,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 53.0,
748
+ "grad_norm": 2.961881399154663,
749
+ "learning_rate": 9.999999999999997e-07,
750
+ "loss": 0.2935,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 53.5,
755
+ "grad_norm": 3.6308419704437256,
756
+ "learning_rate": 1e-06,
757
+ "loss": 0.3619,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 54.0,
762
+ "grad_norm": 3.809734582901001,
763
+ "learning_rate": 1e-06,
764
+ "loss": 0.3063,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 54.5,
769
+ "grad_norm": 2.6650562286376953,
770
+ "learning_rate": 1e-06,
771
+ "loss": 0.3504,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 55.0,
776
+ "grad_norm": 3.361117362976074,
777
+ "learning_rate": 1e-06,
778
+ "loss": 0.3084,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 55.5,
783
+ "grad_norm": 2.6281044483184814,
784
+ "learning_rate": 1e-06,
785
+ "loss": 0.3191,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 56.0,
790
+ "grad_norm": 3.0685670375823975,
791
+ "learning_rate": 1e-06,
792
+ "loss": 0.2472,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 56.5,
797
+ "grad_norm": 3.149151563644409,
798
+ "learning_rate": 1e-06,
799
+ "loss": 0.255,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 57.0,
804
+ "grad_norm": 3.0701425075531006,
805
+ "learning_rate": 1e-06,
806
+ "loss": 0.2392,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 57.5,
811
+ "grad_norm": 2.449301242828369,
812
+ "learning_rate": 1e-06,
813
+ "loss": 0.2239,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 58.0,
818
+ "grad_norm": 2.5579042434692383,
819
+ "learning_rate": 1e-06,
820
+ "loss": 0.265,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 58.5,
825
+ "grad_norm": 3.4325478076934814,
826
+ "learning_rate": 1e-06,
827
+ "loss": 0.2522,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 59.0,
832
+ "grad_norm": 3.4678075313568115,
833
+ "learning_rate": 1e-06,
834
+ "loss": 0.1957,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 59.5,
839
+ "grad_norm": 3.3002102375030518,
840
+ "learning_rate": 1e-06,
841
+ "loss": 0.2152,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 60.0,
846
+ "grad_norm": 2.939915180206299,
847
+ "learning_rate": 1e-06,
848
+ "loss": 0.228,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 60.5,
853
+ "grad_norm": 2.763664484024048,
854
+ "learning_rate": 1e-06,
855
+ "loss": 0.2261,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 61.0,
860
+ "grad_norm": 2.337585210800171,
861
+ "learning_rate": 1e-06,
862
+ "loss": 0.1851,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 61.5,
867
+ "grad_norm": 2.545644760131836,
868
+ "learning_rate": 1e-06,
869
+ "loss": 0.2182,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 62.0,
874
+ "grad_norm": 2.564753770828247,
875
+ "learning_rate": 1e-06,
876
+ "loss": 0.1962,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 62.5,
881
+ "grad_norm": 2.338416814804077,
882
+ "learning_rate": 1e-06,
883
+ "loss": 0.2051,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 63.0,
888
+ "grad_norm": 2.154878854751587,
889
+ "learning_rate": 1e-06,
890
+ "loss": 0.1879,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 63.5,
895
+ "grad_norm": 3.405646800994873,
896
+ "learning_rate": 1e-06,
897
+ "loss": 0.1655,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 64.0,
902
+ "grad_norm": 1.8845716714859009,
903
+ "learning_rate": 1e-06,
904
+ "loss": 0.161,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 64.5,
909
+ "grad_norm": 1.707482099533081,
910
+ "learning_rate": 1e-06,
911
+ "loss": 0.1342,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 65.0,
916
+ "grad_norm": 3.2093379497528076,
917
+ "learning_rate": 1e-06,
918
+ "loss": 0.1416,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 65.5,
923
+ "grad_norm": 3.438514232635498,
924
+ "learning_rate": 1e-06,
925
+ "loss": 0.1486,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 66.0,
930
+ "grad_norm": 1.9615154266357422,
931
+ "learning_rate": 1e-06,
932
+ "loss": 0.1461,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 66.5,
937
+ "grad_norm": 2.3800694942474365,
938
+ "learning_rate": 1e-06,
939
+ "loss": 0.1133,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 67.0,
944
+ "grad_norm": 2.241901159286499,
945
+ "learning_rate": 1e-06,
946
+ "loss": 0.1317,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 67.5,
951
+ "grad_norm": 2.024240255355835,
952
+ "learning_rate": 1e-06,
953
+ "loss": 0.1195,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 68.0,
958
+ "grad_norm": 2.2146880626678467,
959
+ "learning_rate": 1e-06,
960
+ "loss": 0.1413,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 68.5,
965
+ "grad_norm": 2.4345452785491943,
966
+ "learning_rate": 1e-06,
967
+ "loss": 0.1313,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 69.0,
972
+ "grad_norm": 3.0751936435699463,
973
+ "learning_rate": 1e-06,
974
+ "loss": 0.1231,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 69.5,
979
+ "grad_norm": 2.2487804889678955,
980
+ "learning_rate": 1e-06,
981
+ "loss": 0.1131,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 70.0,
986
+ "grad_norm": 3.5457677841186523,
987
+ "learning_rate": 1e-06,
988
+ "loss": 0.0812,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 70.5,
993
+ "grad_norm": 1.4189667701721191,
994
+ "learning_rate": 1e-06,
995
+ "loss": 0.0574,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 71.0,
1000
+ "grad_norm": 2.4439244270324707,
1001
+ "learning_rate": 1e-06,
1002
+ "loss": 0.1146,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 71.5,
1007
+ "grad_norm": 1.7094790935516357,
1008
+ "learning_rate": 1e-06,
1009
+ "loss": 0.0937,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 72.0,
1014
+ "grad_norm": 1.4799623489379883,
1015
+ "learning_rate": 1e-06,
1016
+ "loss": 0.085,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 72.5,
1021
+ "grad_norm": 1.4534505605697632,
1022
+ "learning_rate": 1e-06,
1023
+ "loss": 0.074,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 73.0,
1028
+ "grad_norm": 1.7459020614624023,
1029
+ "learning_rate": 1e-06,
1030
+ "loss": 0.1062,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 73.5,
1035
+ "grad_norm": 1.3827319145202637,
1036
+ "learning_rate": 1e-06,
1037
+ "loss": 0.0597,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 74.0,
1042
+ "grad_norm": 1.4655884504318237,
1043
+ "learning_rate": 1e-06,
1044
+ "loss": 0.0749,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 74.5,
1049
+ "grad_norm": 1.6126585006713867,
1050
+ "learning_rate": 1e-06,
1051
+ "loss": 0.0812,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 75.0,
1056
+ "grad_norm": 1.4007526636123657,
1057
+ "learning_rate": 1e-06,
1058
+ "loss": 0.0724,
1059
+ "step": 150
1060
+ }
1061
+ ],
1062
+ "logging_steps": 1.0,
1063
+ "max_steps": 10000,
1064
+ "num_input_tokens_seen": 0,
1065
+ "num_train_epochs": 5000,
1066
+ "save_steps": 50,
1067
+ "stateful_callbacks": {
1068
+ "TrainerControl": {
1069
+ "args": {
1070
+ "should_epoch_stop": false,
1071
+ "should_evaluate": false,
1072
+ "should_log": false,
1073
+ "should_save": true,
1074
+ "should_training_stop": false
1075
+ },
1076
+ "attributes": {}
1077
+ }
1078
+ },
1079
+ "total_flos": 2.098224817063854e+17,
1080
+ "train_batch_size": 4,
1081
+ "trial_name": null,
1082
+ "trial_params": null
1083
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98948207e9cf8c81f926de8766552046b6d7fe410cb0cdfc4e9391d904120a89
3
+ size 7032
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)