--- dataset_info: features: - name: cleaned_text dtype: string - name: label dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 3822142 num_examples: 30240 - name: validation num_bytes: 479893 num_examples: 3780 - name: test num_bytes: 474875 num_examples: 3780 download_size: 3126764 dataset_size: 4776910 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* license: cc task_categories: - text-classification language: - en tags: - cyberbullying - nlp --- # Cyberbullying Dataset ## Overview This dataset combines five public datasets (tdavidson, OLID, Stormfront, Gab Hate Corpus, and HateXplain) to create a comprehensive resource for training and evaluating binary text classification models to detect cyberbullying. It contains ~30,000 balanced text samples labeled as "bully" (hate speech, offensive) or "normal" (non-offensive), sourced from Twitter, Gab, and Stormfront forums. ## Dataset Structure - **Splits**: - Train: ~30k samples (~80%) - Validation: ~4k samples (~10%) - Test: ~4k samples (~10%) - **Columns**: - `cleaned_text`: Preprocessed text (lowercase, mentions/URLs/newlines removed, basic punctuation kept, numbers/emojis dropped, max 50 words). - `label`: Binary label ("bully" or "normal"). - **Class Balance**: Equal number of "bully" and "normal" samples in each split. ## Preprocessing - Combined from tdavidson, OLID, Stormfront, Gab Hate Corpus, and HateXplain. - Unified labels: "hate"/"offensive" mapped to "bully", "no_hate"/"normal" to "normal". - Applied consistent cleaning: removed mentions, URLs, newlines; converted to lowercase; kept basic punctuation; capped at 50 words. - Deduplicated and balanced classes to ensure robustness. ## Usage Ideal for fine-tuning LLMs for binary text classification (e.g., detecting cyberbullying). Example prompt format: ``` Classify this text: {cleaned_text} Response: {label} ``` Load with Hugging Face `datasets`: ```python from datasets import load_dataset dataset = load_dataset("cike-dev/cyberbullying_dataset") ``` ## Sources and Citations This dataset aggregates the following sources: - tdavidson: Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated hate speech detection and the problem of offensive language. In Proceedings of the 11th International AAAI Conference on Web and Social Media (ICWSM ’17) (pp. 512–515). Montreal, Canada. - OLID: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., & Kumar, R. (2019). Predicting the type and target of offensive posts in social media. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL). - Stormfront: de Gibert, O., Perez, N., García-Pablos, A., & Cuadros, M. (2018, October). Hate speech dataset from a white supremacy forum. In Proceedings of the 2nd Workshop on Abusive Language Online (ALW2) (pp. 11–20). Association for Computational Linguistics. https://doi.org/10.18653/v1/W18-5102 - Gab Hate Corpus: Kennedy, B., Atari, M., Davani, A. M., Yeh, L., Omrani, A., Kim, Y., Coombs, K., Portillo-Wightman, G., Havaldar, S., Gonzalez, E., et al. (2022, April). The Gab Hate Corpus. OSF. https://doi.org/10.17605/OSF.IO/EDUA3 - HateXplain: Mathew, B., Saha, P., Yimam, S. M., Biemann, C., Goyal, P., & Mukherjee, A. (2021). HateXplain: A benchmark dataset for explainable hate speech detection. Proceedings of the AAAI Conference on Artificial Intelligence, 35(17), 14867–14875. ## License The dataset is released under CC-BY 4.0, respecting the licenses of the original datasets. Please cite the sources above when using this dataset. ## Contact For issues or questions, open an issue on the Hugging Face repository or contact the maintainer.