Datasets:
File size: 5,609 Bytes
933ec1f 6e0bad4 933ec1f 7da3ca9 933ec1f 5156d02 933ec1f 5156d02 933ec1f 5156d02 933ec1f 94ade36 a990c51 3797893 eae6ec5 3797893 94ade36 933ec1f 3797893 6e0bad4 933ec1f 6e0bad4 933ec1f 6e0bad4 933ec1f 6e0bad4 933ec1f 6e0bad4 933ec1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
"""
This is the huggingface data loader for TOPVIEWRS Benchmark.
"""
import json
import os
import shutil
import datasets
_CITATION = """
@misc{li2024topviewrs,
title={TopViewRS: Vision-Language Models as Top-View Spatial Reasoners},
author={Chengzu Li and Caiqi Zhang and Han Zhou and Nigel Collier and Anna Korhonen and Ivan Vulić},
year={2024},
eprint={2406.02537},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """
TopViewRS dataset, comprising 11,384 multiple-choice questions with either photo-realistic
or semantic top-view maps of real-world scenarios through a pipeline of automatic collection followed by human alignment.
"""
_HOMEPAGE = "https://topviewrs.github.io/"
_LICENSE = "MIT"
TASK_SPLIT = ['top_view_recognition', 'top_view_localization', 'static_spatial_reasoning', 'dynamic_spatial_reasoning']
_URLS = {
"realistic_json": f"released_realistic_datasets.json",
"semantic_json": f"released_semantic_datasets.json",
"images": f"data.zip"
}
class TOPVIEWRSConfig(datasets.BuilderConfig):
"""BuilderConfig for TOPVIEWRS."""
def __init__(self, task_split, map_type, image_save_dir, **kwargs):
"""BuilderConfig for TOPVIEWRS.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(TOPVIEWRSConfig, self).__init__(**kwargs)
self.task_split = task_split
self.map_type = map_type
self.image_save_dir = image_save_dir
class TOPVIEWRS(datasets.GeneratorBasedBuilder):
"""TOPVIEWRS Dataset"""
BUILDER_CONFIG_CLASS = TOPVIEWRSConfig
BUILDER_CONFIGS = [
TOPVIEWRSConfig(
name="topviewrs",
version=datasets.Version("0.0.0"),
description=_DESCRIPTION,
task_split=None,
map_type=None,
image_save_dir="."
)
]
DEFAULT_CONFIG_NAME = "topviewrs"
def _info(self):
features = datasets.Features(
{
"index": datasets.Value("int32"),
"scene_id": datasets.Value("string"),
"question": datasets.Value("string"),
"choices": datasets.Sequence(datasets.Value("string")),
"labels": datasets.Sequence(datasets.Value("string")),
"choice_type": datasets.Value("string"),
"map_path": datasets.Value("string"),
"question_ability": datasets.Value("string"),
}
)
if self.config.task_split == "dynamic_spatial_reasoning":
features = datasets.Features(
{
"index": datasets.Value("int32"),
"scene_id": datasets.Value("string"),
"question": datasets.Value("string"),
"choices": datasets.Sequence(datasets.Value("string")),
"labels": datasets.Sequence(datasets.Value("string")),
"choice_type": datasets.Value("string"),
"map_path": datasets.Value("string"),
"question_ability": datasets.Value("string"),
"reference_path": datasets.Sequence(datasets.Sequence(datasets.Value("int32")))
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
zip_file = dl_manager.download({"images": _URLS['images']})
os.rename(zip_file['images'], os.path.join(os.path.dirname(zip_file['images']), _URLS['images']))
try:
shutil.unpack_archive(os.path.join(os.path.dirname(zip_file['images']), _URLS['images']), self.config.image_save_dir)
except:
raise FileNotFoundError(f"Unpacking the image data.zip failed. Make sure that you have the zip file at {zip_file}. ")
downloaded_files = dl_manager.download_and_extract({k: v for k, v in _URLS.items() if k != "images"})
image_base_file_dir = self.config.image_save_dir
json_file_path = downloaded_files[f"{self.config.map_type}_json"]
return [
datasets.SplitGenerator(
name=datasets.Split('val'),
gen_kwargs={
"json_file_path": json_file_path,
"image_base_dir": image_base_file_dir
},
)
]
def _generate_examples(self, json_file_path: str, image_base_dir: str):
task = self.config.task_split
map_type = self.config.map_type
map_key = "rgb" if map_type.lower() == "realistic" else map_type
with open(json_file_path) as f:
data_list = json.load(f)[task]
for idx, data_item in enumerate(data_list):
return_item = {
"index": idx,
"scene_id": data_item['scene_id'],
"question": data_item['question'],
"choices": data_item['choices'],
"labels": data_item['labels'],
"choice_type": str(data_item["question_meta_data"]["choices"]),
"map_path": os.path.join(image_base_dir, data_item[f"{map_key}_map"]),
"question_ability": data_item['ability'],
}
if "reference_path" in data_item.keys():
return_item["reference_path"] = data_item["reference_path"]
yield idx, return_item
idx += 1 |