Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: "SIB-CL Datasets"
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- photonic-crystal
|
6 |
+
- quantum
|
7 |
+
- contrastive-learning
|
8 |
+
- scientific-machine-learning
|
9 |
+
- hdf5
|
10 |
+
- pytorch
|
11 |
+
- science
|
12 |
+
- physics
|
13 |
+
---
|
14 |
+
|
15 |
+
# SIB-CL Datasets
|
16 |
+
|
17 |
+
This repository contains the **Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)** datasets for two scientific problems:
|
18 |
+
|
19 |
+
* **PhC2D**: 2D photonic crystal density-of-states (DOS) and bandstructure data.
|
20 |
+
* **TISE**: 3D time-independent Schrödinger equation eigenvalue and eigenvector solutions.
|
21 |
+
|
22 |
+
The data and loader scripts reproduce the behavior of the original PyTorch `Dataset` classes from the SIB-CL paper:
|
23 |
+
|
24 |
+
> Loh, C., Christensen, T., Dangovski, R., Kim, S., & Soljačić, M. (2022). "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science." *Nature Communications*, 13, 4223. [https://www.nature.com/articles/s41467-022-31915-y](https://www.nature.com/articles/s41467-022-31915-y)
|
25 |
+
|
26 |
+
## Repository Structure
|
27 |
+
|
28 |
+
```
|
29 |
+
sibcl-dataset/
|
30 |
+
├── phc2d.h5
|
31 |
+
├── tise.h5
|
32 |
+
├── dataset_loader.py
|
33 |
+
└── README.md
|
34 |
+
```
|
35 |
+
|
36 |
+
* `phc2d.h5`: HDF5 with groups:
|
37 |
+
|
38 |
+
* `unitcell/mpbepsimage/<index>`: 32×32 permittivity images
|
39 |
+
* `unitcell/epsavg/<index>`: scalar average permittivity
|
40 |
+
* `mpbcal/DOS/<index>`, `mpbcal/DOSeldiff/<index>`: DOS arrays
|
41 |
+
* `mpbcal/efreq/`, `mpbcal/emptylattice/`, `mpbcal/eldiff/` for bandstructure
|
42 |
+
|
43 |
+
* `tise.h5`: HDF5 with groups:
|
44 |
+
|
45 |
+
* `unitcell/potential_fil` (or `_res<downres>`): potential arrays
|
46 |
+
* `eigval_fil/<index>`: eigenvalues
|
47 |
+
* `eigvec_fil/<index>`: eigenvectors
|
48 |
+
|
49 |
+
* `dataset_loader.py`: Hugging Face `datasets` script implementing both PhC2D and TISE loaders, with full config options.
|
50 |
+
|
51 |
+
## Metadata
|
52 |
+
|
53 |
+
```yaml
|
54 |
+
dataset_name: sibcl-dataset
|
55 |
+
builder_name: SIBCLDataset
|
56 |
+
configs:
|
57 |
+
- name: phc2d
|
58 |
+
description: "2D photonic crystal DOS & bandstructure"
|
59 |
+
- name: tise
|
60 |
+
description: "3D TISE eigenvalue & eigenvector solutions"
|
61 |
+
license: apache-2.0
|
62 |
+
features:
|
63 |
+
phc2d:
|
64 |
+
inputeps: Array3D(shape=(1,32,32), dtype=float32)
|
65 |
+
y: Sequence(Value(float32))
|
66 |
+
EL: Sequence(Value(float32))
|
67 |
+
ELdiff: Sequence(Value(float32))
|
68 |
+
epsavg: Value(float32)
|
69 |
+
tise:
|
70 |
+
input: Array3D(shape=(1,<downres>,<downres>), dtype=float32)
|
71 |
+
y: Sequence(Value(float32))
|
72 |
+
splits:
|
73 |
+
train: 10000
|
74 |
+
validation: 500
|
75 |
+
test: 2000
|
76 |
+
```
|
77 |
+
|
78 |
+
## Usage
|
79 |
+
|
80 |
+
```python
|
81 |
+
from datasets import load_dataset
|
82 |
+
|
83 |
+
# Load PhC2D (DOS prediction)
|
84 |
+
ds_phc = load_dataset("YOUR_USERNAME/sibcl-dataset", name="phc2d", split="train")
|
85 |
+
|
86 |
+
# Load TISE (eigenvalue prediction)
|
87 |
+
ds_tise = load_dataset("YOUR_USERNAME/sibcl-dataset", name="tise", split="test")
|
88 |
+
```
|
89 |
+
|
90 |
+
## Processing & Training
|
91 |
+
|
92 |
+
For processing pipelines and model training code, see the SIB-CL GitHub repository:
|
93 |
+
[https://github.com/clott3/SIB-CL](https://github.com/clott3/SIB-CL)
|
94 |
+
|
95 |
+
---
|
96 |
+
|
97 |
+
**Citation**:
|
98 |
+
Loh, C., Christensen, T., Dangovski, R., Kim, S., & Soljačić, M. (2022). "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science." *Nature Communications*, 13, 4223. [https://www.nature.com/articles/s41467-022-31915-y](https://www.nature.com/articles/s41467-022-31915-y)
|
99 |
+
|
cylin-tm-11k.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18f4a8e82ba901d696c9a763c84f14d62cad300b89968e310fff92cf2c064e39
|
3 |
+
size 1863836500
|
mf1-tm-32k.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6fa0fd6cddd2e7955bab07acd2cf1608febd12bf375894309e5e28e5ddfafca
|
3 |
+
size 5770918152
|
tise_3d_mf2_sigfac20_xmax5_me1.0_e0_n32_LR4_35k.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae10ad122a09cd535645fe4252b9466875bba026da4a9dd1bc48981d63fd8818
|
3 |
+
size 41650599460
|
tise_3d_mf2_sigfac20_xmax5_me1.0_e0_n32_LR5.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f32738083c14d2236118658ebac7323cbf331b3858985791957e9f453f57c745
|
3 |
+
size 17857611632
|
tise_3d_mf2_sigfac20_xmax5_me1.0_e0_n32_res64.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9639d97f8d19a8290ea3f3ca8577d52cc3c513b315aee92ee376f7681d160bb1
|
3 |
+
size 37228324112
|