import os import faiss import json import numpy as np from FlagEmbedding import FlagLLMModel, FlagAutoModel def create_index(embeddings: np.ndarray): index = faiss.IndexFlatIP(len(embeddings[0])) embeddings = np.asarray(embeddings, dtype=np.float32) index.add(embeddings) return index def move_index_to_gpu(index): try: co = faiss.GpuMultipleClonerOptions() co.shard = True co.useFloat16 = True index = faiss.index_cpu_to_all_gpus(index, co=co) except: print('not support faiss-gpu') return index def load_model_util(previous_model, model_path): self_model_path = '/share/chaofan/models/bge-multilingual-gemma2' if model_path == 'BAAI/bge-multilingual-gemma2': if previous_model is not None and previous_model.model_name_or_path == self_model_path: return previous_model model = FlagLLMModel(self_model_path, query_instruction_for_retrieval="Given a question, retrieve Wikipedia passages that answer the question.", query_instruction_format="{}\n{}", use_fp16=True, devices=['cuda:0']) else: if previous_model is not None and previous_model.model_name_or_path == model_path: return previous_model model = FlagAutoModel.from_finetuned(model_path, use_fp16=True, devices=['cuda:0']) if previous_model is not None: del previous_model model.model.half() model.model = model.model.to('cuda:0') return model def load_corpus_util(base_dir, lang): corpus_path = os.path.join(base_dir, lang, 'corpus.jsonl') data = [] with open(corpus_path) as f: for line in f: tmp = json.loads(line) data.append(tmp) queries = [] queries_path = os.path.join(base_dir, lang, 'dev_queries.jsonl') with open(queries_path) as f: for line in f: tmp = json.loads(line) queries.append(tmp['text']) if len(queries) >= 5: break return data, queries def build_index_util(emb_dir, lang, model, data): emb_path = os.path.join(emb_dir, lang, 'corpus.npy') index_path = os.path.join(emb_dir, lang, 'faiss.index') if os.path.exists(index_path): faiss_index = faiss.read_index(index_path) return move_index_to_gpu(faiss_index) if os.path.exists(emb_path): doc_emb = np.load(emb_path) else: doc_emb = model.encode_corpus(data, batch_size=256) np.save(emb_path, doc_emb) faiss_index = create_index(doc_emb) # faiss.write_index(faiss_index, index_path) faiss_index = move_index_to_gpu(faiss_index) return faiss_index def search_util(model, query, corpus, faiss_index, topk): query_emb = model.encode_queries(query) query_emb = query_emb.reshape(1, -1) scores, inxs = faiss_index.search(query_emb, k=topk) data = [] for idx in inxs[0]: data.append(corpus[idx]) return scores[0], data