import gradio as gr import random import time from utils import load_model_util, load_corpus_util, build_index_util, search_util model = None corpus = None faiss_index = None data_dir = '/share/chaofan/code/bge_demo/data' index_dir = '/share/chaofan/code/bge_demo/emb' lang = 'en' avaliable_queries = [] # Simulate loading a model def load_model(model_name): global model """ Function to load a model and provide status updates with a custom loading type. """ # 定义 HTML 样式 loading_style = "" # 自定义加载中图标 success_style = "" # 成功图标 error_style = "" # 错误图标 try: yield f"{loading_style} Loading model {model_name}..." model = load_model_util(model, model_name) yield f"{success_style} Model {model_name} has been successfully loaded!" except Exception as e: yield f"{error_style} Failed to load model {model_name}: {str(e)}" # Simulate selecting a language def choose_language(language): global lang lang = language language_full = { "zh": "Chinese", "en": "English", "ar": "Arabic", "bn": "Bengali", "es": "Spanish", "fa": "Persian", "fi": "Finnish", "fr": "French", "hi": "Hindi", "id": "Indonesian", "ja": "Japanese", "ko": "Korean", "ru": "Russian", "sw": "Swahili", "te": "Telugu", "th": "Thai", "de": "German", "yo": "Yoruba" }.get(language, language) return f" Current Language: {language_full} ({language})" # Simulate loading a corpus def load_corpus(language): global data_dir, corpus, avaliable_queries # Initial loading status corpus_name = f"miracl.{language}" yield f""" Loading corpus {corpus_name} ...""" # Simulate loading process print(f"Loading corpus: {corpus_name}") corpus, avaliable_queries = load_corpus_util(data_dir, language) yield f""" Corpus {corpus_name} has been successfully loaded!""" def update_query_input(value): global avaliable_queries return gr.Dropdown( label="Search Query", choices=avaliable_queries, # 预定义的选项 value="", # 默认值 allow_custom_value=True, # 允许用户输入自定义值 # placeholder="Select or enter search keywords..." ) # Simulate building an index def build_index(language): # Simulate progressive building process global model, corpus, index_dir, faiss_index, lang # 定义 HTML 样式 loading_style = "" # 自定义加载中图标 success_style = "" # 成功图标 error_style = "" # 错误图标 if model is None: yield f"{error_style} You need to load the model before building index!" elif corpus is None: yield f"{error_style} You need to load the corpus before building index!" else: try: yield f"{loading_style} Building index..." faiss_index = build_index_util(index_dir, lang, model, corpus) yield f"{success_style} Index building complete!" except Exception as e: yield f"{error_style} Failed to build index: {str(e)}" # Simulate retrieving results def retrieve_results(query, language, top_k): global model, corpus, faiss_index yield f"""
⏳ Start to search ...
""" error_style = "" # 错误图标 try: scores, data = search_util(model, query, corpus, faiss_index, top_k) # print(scores) # print(data) # Generate random results results = [] for score, d in zip(scores, data): doc_id = d['id'] title = d['title'] content = d['text'] results.append((float(score), doc_id, title, content)) # # Sort by score # results.sort(reverse=True) # Generate HTML display html_result = f"""

Search Results: {top_k} items

Query: "{query}" | Language: {language}

""" for i, (score, doc_id, title, content) in enumerate(results): # Set gradient color color = f"hsl({min(120, int(score*120))}, 80%, 40%)" html_result += f"""
Result {i+1}
Title: {title}
{content}
""" html_result += "
" yield html_result except Exception as e: yield f"{error_style} Failed to build index: {str(e)}" # Custom CSS custom_css = """ .main-header { background: linear-gradient(135deg, #6964DE, #FCA6E9); color: white; padding: 20px; border-radius: 10px; margin-bottom: 20px; text-align: center; } .step-header { color: #333; margin-top: 5px; margin-bottom: 10px; font-weight: bold; display: flex; align-items: center; justify-content: center; } .step-header span { background: #6964DE; color: white; width: 28px; height: 28px; border-radius: 50%; display: inline-flex; align-items: center; justify-content: center; margin-right: 10px; } .step-card { background: white; border-radius: 10px; padding: 15px; margin-bottom: 15px; box-shadow: 0 4px 6px rgba(0,0,0,0.05); text-align: center; } button { background-color: #0d6efd !important; color: white !important; border: none !important; padding: 5px 15px !important; /* Adjust button size */ border-radius: 5px !important; font-size: 0.9em !important; /* Adjust font size */ cursor: pointer !important; } button:hover { background-color: #0056b3 !important; } .row { display: flex; align-items: center; justify-content: space-between; gap: 10px; /* Control spacing between components */ } footer {visibility: hidden} """ # Define Gradio interface with gr.Blocks(css=custom_css) as interface: # Top header gr.HTML("""

🔎 Multilingual Retrieval System

""") with gr.Row(elem_classes="row"): # Use Row to place components in the same row # Step 1: Load model with gr.Group(elem_classes="step-card"): gr.HTML('
1Load Model
') model_name = gr.Textbox(value="BAAI/bge-multilingual-gemma2", label="Model Name", interactive=True) load_model_button = gr.Button("Load Model") model_status = gr.HTML(label="Status") load_model_button.click(load_model, inputs=[model_name], outputs=[model_status]) # Step 2: Select language with gr.Group(elem_classes="step-card"): gr.HTML('
2Select Language
') language_input = gr.Dropdown(choices=['en', 'zh', 'ar', 'bn', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'de', 'yo'], value="en", label="Select Language", interactive=True) choose_language_button = gr.Button("Confirm Language") # Button in the same row language_status = gr.HTML(label="Current Language") choose_language_button.click(choose_language, inputs=[language_input], outputs=[language_status]) with gr.Row(elem_classes="row"): # Use Row to place components in the same row # Step 3: Load corpus with gr.Group(elem_classes="step-card"): gr.HTML('
3Load Corpus
') load_corpus_button = gr.Button("Load Corpus", scale=1) corpus_status = gr.HTML(label="Corpus Information") # Step 4: Build index with gr.Group(elem_classes="step-card"): gr.HTML('
4Build Corpus Index
') build_index_button = gr.Button("Build Index", scale=1) index_status = gr.HTML(label="Index Status") build_index_button.click(build_index, inputs=[language_input], outputs=[index_status]) # Step 5: Retrieve results with gr.Group(elem_classes="step-card"): gr.HTML('
5Retrieve Results
') # query_input = gr.Textbox(label="Search Query", placeholder="Enter search keywords...") query_input = gr.Dropdown( label="Search Query", choices=avaliable_queries, # 预定义的选项 value="", # 默认值 allow_custom_value=True, # 允许用户输入自定义值 # placeholder="Select or enter search keywords..." ) load_corpus_button.click(load_corpus, inputs=[language_input], outputs=[corpus_status]).then(update_query_input, inputs=[query_input], outputs=[query_input]) # 因为要让选项变化 top_k = gr.Slider(minimum=1, maximum=30, step=1, value=10, label="Number of Results (Top-K)") retrieve_button = gr.Button("Start Search") retrieval_results = gr.HTML(label="Search Results") retrieve_button.click(retrieve_results, inputs=[query_input, language_input, top_k], outputs=[retrieval_results]) # Launch the interface interface.launch(share=True)