File size: 10,436 Bytes
53afb32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
import random
import time

from utils import load_model_util, load_corpus_util, build_index_util, search_util


model = None
corpus = None
faiss_index = None
data_dir = '/share/chaofan/code/bge_demo/data'
index_dir = '/share/chaofan/code/bge_demo/emb'
lang = 'en'
avaliable_queries = []

# Simulate loading a model
def load_model(model_name):
    global model
    """
    Function to load a model and provide status updates with a custom loading type.
    """
    # 定义 HTML 样式
    loading_style = "<span style='color:#ffc107; font-weight:bold'>⏳</span>"  # 自定义加载中图标
    success_style = "<span style='color:#28a745; font-weight:bold'>✔</span>"  # 成功图标
    error_style = "<span style='color:#dc3545; font-weight:bold'>✗</span>"   # 错误图标
    
    try:
        yield f"{loading_style} Loading model <b>{model_name}</b>..."
        model = load_model_util(model, model_name)
        yield f"{success_style} Model <b>{model_name}</b> has been successfully loaded!"
    except Exception as e:
        yield f"{error_style} Failed to load model <b>{model_name}</b>: {str(e)}"

# Simulate selecting a language
def choose_language(language):
    global lang
    lang = language
    language_full = {
        "zh": "Chinese",
        "en": "English",
        "ar": "Arabic",
        "bn": "Bengali",
        "es": "Spanish",
        "fa": "Persian",
        "fi": "Finnish",
        "fr": "French",
        "hi": "Hindi",
        "id": "Indonesian",
        "ja": "Japanese",
        "ko": "Korean",
        "ru": "Russian",
        "sw": "Swahili",
        "te": "Telugu",
        "th": "Thai",
        "de": "German",
        "yo": "Yoruba"
    }.get(language, language)
    return f"<span style='color:#0d6efd; font-weight:bold'>⚡</span> Current Language: <b>{language_full}</b> ({language})"

# Simulate loading a corpus
def load_corpus(language):
    global data_dir, corpus, avaliable_queries
    # Initial loading status
    corpus_name = f"miracl.{language}"
    yield f"""<span style='color:#ffc107; font-weight:bold'>⏳</span> Loading corpus <b>{corpus_name}</b> ..."""
    # Simulate loading process
    print(f"Loading corpus: {corpus_name}")
    corpus, avaliable_queries = load_corpus_util(data_dir, language)

    yield f"""<span style='color:#28a745; font-weight:bold'>✔</span> Corpus <b>{corpus_name}</b> has been successfully loaded!"""

def update_query_input(value):
    global avaliable_queries

    return gr.Dropdown(
        label="Search Query",
        choices=avaliable_queries,  # 预定义的选项
        value="",  # 默认值
        allow_custom_value=True,  # 允许用户输入自定义值
        # placeholder="Select or enter search keywords..."
    )

# Simulate building an index
def build_index(language):
    # Simulate progressive building process
    global model, corpus, index_dir, faiss_index, lang

    # 定义 HTML 样式
    loading_style = "<span style='color:#ffc107; font-weight:bold'>⏳</span>"  # 自定义加载中图标
    success_style = "<span style='color:#28a745; font-weight:bold'>✔</span>"  # 成功图标
    error_style = "<span style='color:#dc3545; font-weight:bold'>✗</span>"   # 错误图标

    if model is None:
        yield f"{error_style} You need to load the model before building index!"
    elif corpus is None:
        yield f"{error_style} You need to load the corpus before building index!"
    else:
        try:
            yield f"{loading_style} Building index..."
            faiss_index = build_index_util(index_dir, lang, model, corpus)
            yield f"{success_style} Index building complete!"
        except Exception as e:
            yield f"{error_style} Failed to build index: {str(e)}"

# Simulate retrieving results
def retrieve_results(query, language, top_k):
    global model, corpus, faiss_index

    yield f"""<div style='background:#f8f9fa; padding:10px; border-left:4px solid #17a2b8; border-radius:4px'>
    <span style='color:orange'>⏳ Start to search ...</span>
    </div>"""

    error_style = "<span style='color:#dc3545; font-weight:bold'>✗</span>"   # 错误图标

    try:
        scores, data = search_util(model, query, corpus, faiss_index, top_k)
        # print(scores)
        # print(data)
        # Generate random results
        results = []
        for score, d in zip(scores, data):
            doc_id = d['id']
            title = d['title']
            content = d['text']
            results.append((float(score), doc_id, title, content))
        
        # # Sort by score
        # results.sort(reverse=True)
        
        # Generate HTML display
        html_result = f"""<div style='background:#f8f9fa; padding:15px; border-radius:8px'>
        <h3>Search Results: <span style='color:#0d6efd'>{top_k}</span> items</h3>
        <p>Query: <b>"{query}"</b> | Language: <b>{language}</b></p>
        <div style='margin-top:15px'>"""
        
        for i, (score, doc_id, title, content) in enumerate(results):
            # Set gradient color
            color = f"hsl({min(120, int(score*120))}, 80%, 40%)"
            html_result += f"""<div style='margin-bottom:5px; padding:10px; border-left:4px solid {color}; background:white; border-radius:4px'>
            <div style='display:flex; justify-content:space-between'>
                <span style='font-weight:bold'>Result {i+1}</span>
            </div>
            <div style='color:#666; font-size:1.0em'>Title: {title}</div>
            <div style='margin-top:5px'>{content}</div>
            </div>"""
        
        html_result += "</div></div>"
        yield html_result
    except Exception as e:
        yield f"{error_style} Failed to build index: {str(e)}"

# Custom CSS
custom_css = """
.main-header {
    background: linear-gradient(135deg, #6964DE, #FCA6E9);
    color: white;
    padding: 20px;
    border-radius: 10px;
    margin-bottom: 20px;
    text-align: center;
}
.step-header {
    color: #333;
    margin-top: 5px;
    margin-bottom: 10px;
    font-weight: bold;
    display: flex;
    align-items: center;
    justify-content: center;
}
.step-header span {
    background: #6964DE;
    color: white;
    width: 28px;
    height: 28px;
    border-radius: 50%;
    display: inline-flex;
    align-items: center;
    justify-content: center;
    margin-right: 10px;
}
.step-card {
    background: white;
    border-radius: 10px;
    padding: 15px;
    margin-bottom: 15px;
    box-shadow: 0 4px 6px rgba(0,0,0,0.05);
    text-align: center;
}
button {
    background-color: #0d6efd !important;
    color: white !important;
    border: none !important;
    padding: 5px 15px !important; /* Adjust button size */
    border-radius: 5px !important;
    font-size: 0.9em !important; /* Adjust font size */
    cursor: pointer !important;
}
button:hover {
    background-color: #0056b3 !important;
}
.row {
    display: flex;
    align-items: center;
    justify-content: space-between;
    gap: 10px; /* Control spacing between components */
}
footer {visibility: hidden}
"""

# Define Gradio interface
with gr.Blocks(css=custom_css) as interface:
    # Top header
    gr.HTML("""
    <div class="main-header">
        <h1 style="margin:0; font-size:2.5em;">🔎 Multilingual Retrieval System</h1>
    </div>
    """)

    with gr.Row(elem_classes="row"):  # Use Row to place components in the same row

        # Step 1: Load model
        with gr.Group(elem_classes="step-card"):
            gr.HTML('<div class="step-header"><span>1</span>Load Model</div>')
            model_name = gr.Textbox(value="BAAI/bge-multilingual-gemma2", label="Model Name", interactive=True)
            load_model_button = gr.Button("Load Model")
            model_status = gr.HTML(label="Status")
            load_model_button.click(load_model, inputs=[model_name], outputs=[model_status])
    
        # Step 2: Select language
        with gr.Group(elem_classes="step-card"):
            gr.HTML('<div class="step-header"><span>2</span>Select Language</div>')
            language_input = gr.Dropdown(choices=['en', 'zh', 'ar', 'bn', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'de', 'yo'], value="en", label="Select Language", interactive=True)
            choose_language_button = gr.Button("Confirm Language")  # Button in the same row
            language_status = gr.HTML(label="Current Language")
            choose_language_button.click(choose_language, inputs=[language_input], outputs=[language_status])
    
    with gr.Row(elem_classes="row"):  # Use Row to place components in the same row

        # Step 3: Load corpus
        with gr.Group(elem_classes="step-card"):
            gr.HTML('<div class="step-header"><span>3</span>Load Corpus</div>')
            load_corpus_button = gr.Button("Load Corpus", scale=1)
            corpus_status = gr.HTML(label="Corpus Information")
        
        # Step 4: Build index
        with gr.Group(elem_classes="step-card"):
            gr.HTML('<div class="step-header"><span>4</span>Build Corpus Index</div>')
            build_index_button = gr.Button("Build Index", scale=1)
            index_status = gr.HTML(label="Index Status")
            build_index_button.click(build_index, inputs=[language_input], outputs=[index_status])
    
    # Step 5: Retrieve results
    with gr.Group(elem_classes="step-card"):
        gr.HTML('<div class="step-header"><span>5</span>Retrieve Results</div>')
        # query_input = gr.Textbox(label="Search Query", placeholder="Enter search keywords...")
        query_input = gr.Dropdown(
            label="Search Query",
            choices=avaliable_queries,  # 预定义的选项
            value="",  # 默认值
            allow_custom_value=True,  # 允许用户输入自定义值
            # placeholder="Select or enter search keywords..."
        )
        load_corpus_button.click(load_corpus, inputs=[language_input], outputs=[corpus_status]).then(update_query_input,  inputs=[query_input], outputs=[query_input]) # 因为要让选项变化
        top_k = gr.Slider(minimum=1, maximum=30, step=1, value=10, label="Number of Results (Top-K)")
        retrieve_button = gr.Button("Start Search")
        retrieval_results = gr.HTML(label="Search Results")
        retrieve_button.click(retrieve_results, inputs=[query_input, language_input, top_k], outputs=[retrieval_results])

# Launch the interface
interface.launch(share=True)