carlosj934 commited on
Commit
22f15a1
·
2 Parent(s): 728a84a 52c1f32

Resolve README merge conflict

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -16,24 +16,38 @@ language:
16
  - en
17
  size_categories:
18
  - n<1K
 
19
  version: 0.0.1
 
 
 
20
  ---
21
 
22
  # BJJ Positions & Submissions Dataset
23
 
24
  ## Dataset Description
25
 
 
26
  This dataset contains pose keypoint annotations **and compressed video clips** for Brazilian Jiu-Jitsu (BJJ) combat positions and submissions. It includes 2D keypoint coordinates for up to 2 athletes per image, labeled with specific BJJ positions and submission attempts, as well as short video segments for each position/submission. The videos are optimized for use in video transformer models such as ViViT.
 
 
 
27
 
28
  ### Dataset Summary
29
 
30
  - **Total samples**: 1
31
  - **Position classes**: 1 unique BJJ positions
32
  - **Keypoint format**: MS-COCO (17 keypoints per person)
 
33
  - **Video format**: MP4, H.264, 360p/480p, 15 FPS, compressed for ML
34
  - **Data format**: [x, y, confidence] for each keypoint, plus associated video
35
  - **Last updated**: 2025-07-21
36
  - **Version**: 0.0.1
 
 
 
 
 
37
 
38
  ### Supported Tasks
39
 
@@ -41,7 +55,10 @@ This dataset contains pose keypoint annotations **and compressed video clips** f
41
  - Submission detection
42
  - Multi-person pose estimation
43
  - Combat sports analysis
 
44
  - **Video action recognition (ViViT, etc.)**
 
 
45
  - Action recognition in grappling
46
 
47
  ## Recent Updates
@@ -71,7 +88,10 @@ This dataset contains pose keypoint annotations **and compressed video clips** f
71
  - `num_people`: Number of people detected (1 or 2)
72
  - `total_keypoints`: Total visible keypoints across both athletes
73
  - `date_added`: Date when sample was added to dataset
 
74
  - **`video_path`**: Relative path to the associated compressed video clip (MP4, suitable for ViViT and other video models)
 
 
75
 
76
  ### Keypoint Format
77
 
@@ -83,11 +103,14 @@ Uses MS-COCO 17-keypoint format:
83
 
84
  Each keypoint: [x, y, confidence] where confidence 0.0-1.0
85
 
 
86
  ### Video Format
87
 
88
  - **Format**: MP4 (H.264), 360p or 480p, 15 FPS, compressed for efficient ML training
89
  - **Usage**: Each sample links to a short video clip showing the position/submission, suitable for direct use in video transformer models (e.g., ViViT)
90
 
 
 
91
  ## Usage
92
 
93
  ```python
@@ -101,6 +124,7 @@ sample = dataset['train'][0]
101
  print(f"Position: {sample['position']}")
102
  print(f"Number of people: {sample['num_people']}")
103
  print(f"Athlete 1 keypoints: {len(sample['pose1_keypoints'])}")
 
104
  print(f"Video path: {sample['video_path']}")
105
 
106
  # Example: Load video for ViViT preprocessing
@@ -114,6 +138,8 @@ while True:
114
  frames.append(frame)
115
  cap.release()
116
  print(f"Loaded {len(frames)} frames for ViViT input.")
 
 
117
 
118
  # Filter by specific positions
119
  guard_samples = dataset['train'].filter(lambda x: 'guard' in x['position'])
@@ -122,14 +148,22 @@ print(f"Guard positions: {len(guard_samples)} samples")
122
 
123
  ## Data Collection Progress
124
 
 
125
  The dataset is continuously updated with new BJJ position and submission samples, including both pose annotations and video clips. Each position is being captured from multiple angles and with different athletes to improve model generalization and support robust video-based learning.
 
 
 
126
 
127
  ### Collection Goals
128
 
129
  - **Target**: 50+ samples per position (900+ total)
130
  - **Current**: 1 total samples
131
  - **Coverage**: 1/18+ positions represented
 
132
  - **Focus**: High-quality pose annotations and video clips for training robust BJJ classifiers and video models (ViViT, etc.)
 
 
 
133
 
134
  ## Applications
135
 
@@ -140,7 +174,10 @@ This dataset can be used for:
140
  - **Training Feedback**: Provide real-time feedback on position quality
141
  - **Competition Analysis**: Automatically score and analyze BJJ matches
142
  - **Educational Tools**: Interactive learning applications for BJJ students
 
143
  - **Video Action Recognition**: Train ViViT and other video transformer models for grappling action recognition
 
 
144
 
145
  ## Citation
146
 
@@ -151,7 +188,11 @@ If you use this dataset in your research, please cite:
151
  title={BJJ Positions and Submissions Dataset},
152
  author={Carlos J},
153
  year={2025},
 
154
  version={0.0.1},
 
 
 
155
  publisher={Hugging Face},
156
  url={https://huggingface.co/datasets/carlosj934/BJJ_Positions_Submissions}
157
  }
 
16
  - en
17
  size_categories:
18
  - n<1K
19
+ <<<<<<< HEAD
20
  version: 0.0.1
21
+ =======
22
+ version: 1.2.0
23
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
24
  ---
25
 
26
  # BJJ Positions & Submissions Dataset
27
 
28
  ## Dataset Description
29
 
30
+ <<<<<<< HEAD
31
  This dataset contains pose keypoint annotations **and compressed video clips** for Brazilian Jiu-Jitsu (BJJ) combat positions and submissions. It includes 2D keypoint coordinates for up to 2 athletes per image, labeled with specific BJJ positions and submission attempts, as well as short video segments for each position/submission. The videos are optimized for use in video transformer models such as ViViT.
32
+ =======
33
+ This dataset contains pose keypoint annotations for Brazilian Jiu-Jitsu (BJJ) combat positions and submissions. It includes 2D keypoint coordinates for up to 2 athletes per image, labeled with specific BJJ positions and submission attempts.
34
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
35
 
36
  ### Dataset Summary
37
 
38
  - **Total samples**: 1
39
  - **Position classes**: 1 unique BJJ positions
40
  - **Keypoint format**: MS-COCO (17 keypoints per person)
41
+ <<<<<<< HEAD
42
  - **Video format**: MP4, H.264, 360p/480p, 15 FPS, compressed for ML
43
  - **Data format**: [x, y, confidence] for each keypoint, plus associated video
44
  - **Last updated**: 2025-07-21
45
  - **Version**: 0.0.1
46
+ =======
47
+ - **Data format**: [x, y, confidence] for each keypoint
48
+ - **Last updated**: 2025-07-21
49
+ - **Version**: 1.2.0
50
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
51
 
52
  ### Supported Tasks
53
 
 
55
  - Submission detection
56
  - Multi-person pose estimation
57
  - Combat sports analysis
58
+ <<<<<<< HEAD
59
  - **Video action recognition (ViViT, etc.)**
60
+ =======
61
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
62
  - Action recognition in grappling
63
 
64
  ## Recent Updates
 
88
  - `num_people`: Number of people detected (1 or 2)
89
  - `total_keypoints`: Total visible keypoints across both athletes
90
  - `date_added`: Date when sample was added to dataset
91
+ <<<<<<< HEAD
92
  - **`video_path`**: Relative path to the associated compressed video clip (MP4, suitable for ViViT and other video models)
93
+ =======
94
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
95
 
96
  ### Keypoint Format
97
 
 
103
 
104
  Each keypoint: [x, y, confidence] where confidence 0.0-1.0
105
 
106
+ <<<<<<< HEAD
107
  ### Video Format
108
 
109
  - **Format**: MP4 (H.264), 360p or 480p, 15 FPS, compressed for efficient ML training
110
  - **Usage**: Each sample links to a short video clip showing the position/submission, suitable for direct use in video transformer models (e.g., ViViT)
111
 
112
+ =======
113
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
114
  ## Usage
115
 
116
  ```python
 
124
  print(f"Position: {sample['position']}")
125
  print(f"Number of people: {sample['num_people']}")
126
  print(f"Athlete 1 keypoints: {len(sample['pose1_keypoints'])}")
127
+ <<<<<<< HEAD
128
  print(f"Video path: {sample['video_path']}")
129
 
130
  # Example: Load video for ViViT preprocessing
 
138
  frames.append(frame)
139
  cap.release()
140
  print(f"Loaded {len(frames)} frames for ViViT input.")
141
+ =======
142
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
143
 
144
  # Filter by specific positions
145
  guard_samples = dataset['train'].filter(lambda x: 'guard' in x['position'])
 
148
 
149
  ## Data Collection Progress
150
 
151
+ <<<<<<< HEAD
152
  The dataset is continuously updated with new BJJ position and submission samples, including both pose annotations and video clips. Each position is being captured from multiple angles and with different athletes to improve model generalization and support robust video-based learning.
153
+ =======
154
+ The dataset is continuously updated with new BJJ position and submission samples. Each position is being captured from multiple angles and with different athletes to improve model generalization.
155
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
156
 
157
  ### Collection Goals
158
 
159
  - **Target**: 50+ samples per position (900+ total)
160
  - **Current**: 1 total samples
161
  - **Coverage**: 1/18+ positions represented
162
+ <<<<<<< HEAD
163
  - **Focus**: High-quality pose annotations and video clips for training robust BJJ classifiers and video models (ViViT, etc.)
164
+ =======
165
+ - **Focus**: High-quality pose annotations for training robust BJJ classifiers
166
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
167
 
168
  ## Applications
169
 
 
174
  - **Training Feedback**: Provide real-time feedback on position quality
175
  - **Competition Analysis**: Automatically score and analyze BJJ matches
176
  - **Educational Tools**: Interactive learning applications for BJJ students
177
+ <<<<<<< HEAD
178
  - **Video Action Recognition**: Train ViViT and other video transformer models for grappling action recognition
179
+ =======
180
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
181
 
182
  ## Citation
183
 
 
188
  title={BJJ Positions and Submissions Dataset},
189
  author={Carlos J},
190
  year={2025},
191
+ <<<<<<< HEAD
192
  version={0.0.1},
193
+ =======
194
+ version={1.2.0},
195
+ >>>>>>> 52c1f32e9ebdc8666e3da854c10f47aa5996ae90
196
  publisher={Hugging Face},
197
  url={https://huggingface.co/datasets/carlosj934/BJJ_Positions_Submissions}
198
  }