fix dataset
Browse files- README.md +2 -4
- process/tweet_ner.py +62 -0
README.md
CHANGED
|
@@ -62,14 +62,12 @@ The data fields are the same among all splits.
|
|
| 62 |
#### tweet_qa
|
| 63 |
- `text`: a `string` feature.
|
| 64 |
- `gold_label_str`: a `string` feature.
|
| 65 |
-
- `
|
| 66 |
-
- `question`: a `string` feature.
|
| 67 |
|
| 68 |
#### tweet_qg
|
| 69 |
- `text`: a `string` feature.
|
| 70 |
- `gold_label_str`: a `string` feature.
|
| 71 |
-
- `
|
| 72 |
-
- `question`: a `string` feature.
|
| 73 |
|
| 74 |
#### tweet_intimacy
|
| 75 |
- `text`: a `string` feature.
|
|
|
|
| 62 |
#### tweet_qa
|
| 63 |
- `text`: a `string` feature.
|
| 64 |
- `gold_label_str`: a `string` feature.
|
| 65 |
+
- `context`: a `string` feature.
|
|
|
|
| 66 |
|
| 67 |
#### tweet_qg
|
| 68 |
- `text`: a `string` feature.
|
| 69 |
- `gold_label_str`: a `string` feature.
|
| 70 |
+
- `context`: a `string` feature.
|
|
|
|
| 71 |
|
| 72 |
#### tweet_intimacy
|
| 73 |
- `text`: a `string` feature.
|
process/tweet_ner.py
CHANGED
|
@@ -1,7 +1,66 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
|
|
|
|
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
os.makedirs("data/tweet_ner7", exist_ok=True)
|
| 6 |
data = load_dataset("tner/tweetner7")
|
| 7 |
|
|
@@ -10,6 +69,9 @@ def process(tmp):
|
|
| 10 |
tmp = [i.to_dict() for _, i in tmp.iterrows()]
|
| 11 |
for i in tmp:
|
| 12 |
i.pop("id")
|
|
|
|
|
|
|
|
|
|
| 13 |
i['gold_label_sequence'] = i.pop('tags').tolist()
|
| 14 |
i['text_tokenized'] = i.pop('tokens').tolist()
|
| 15 |
i['text'] = ' '.join(i['text_tokenized'])
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
+
from typing import List
|
| 4 |
+
from pprint import pprint
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
+
label2id = {
|
| 8 |
+
"B-corporation": 0,
|
| 9 |
+
"B-creative_work": 1,
|
| 10 |
+
"B-event": 2,
|
| 11 |
+
"B-group": 3,
|
| 12 |
+
"B-location": 4,
|
| 13 |
+
"B-person": 5,
|
| 14 |
+
"B-product": 6,
|
| 15 |
+
"I-corporation": 7,
|
| 16 |
+
"I-creative_work": 8,
|
| 17 |
+
"I-event": 9,
|
| 18 |
+
"I-group": 10,
|
| 19 |
+
"I-location": 11,
|
| 20 |
+
"I-person": 12,
|
| 21 |
+
"I-product": 13,
|
| 22 |
+
"O": 14
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def decode_ner_tags(tag_sequence: List, input_sequence: List):
|
| 27 |
+
""" decode ner tag sequence """
|
| 28 |
+
def update_collection(_tmp_entity, _tmp_entity_type, _tmp_pos, _out):
|
| 29 |
+
if len(_tmp_entity) != 0 and _tmp_entity_type is not None:
|
| 30 |
+
_out.append({'type': _tmp_entity_type, 'entity': _tmp_entity, 'position': _tmp_pos})
|
| 31 |
+
_tmp_entity = []
|
| 32 |
+
_tmp_entity_type = None
|
| 33 |
+
return _tmp_entity, _tmp_entity_type, _tmp_pos, _out
|
| 34 |
+
|
| 35 |
+
assert len(tag_sequence) == len(input_sequence), str([len(tag_sequence), len(input_sequence)])
|
| 36 |
+
out = []
|
| 37 |
+
tmp_entity = []
|
| 38 |
+
tmp_pos = []
|
| 39 |
+
tmp_entity_type = None
|
| 40 |
+
for n, (_l, _i) in enumerate(zip(tag_sequence, input_sequence)):
|
| 41 |
+
if _l.startswith('B-'):
|
| 42 |
+
_, _, _, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out)
|
| 43 |
+
tmp_entity_type = '-'.join(_l.split('-')[1:])
|
| 44 |
+
tmp_entity = [_i]
|
| 45 |
+
tmp_pos = [n]
|
| 46 |
+
elif _l.startswith('I-'):
|
| 47 |
+
tmp_tmp_entity_type = '-'.join(_l.split('-')[1:])
|
| 48 |
+
if len(tmp_entity) == 0:
|
| 49 |
+
# if 'I' not start with 'B', skip it
|
| 50 |
+
tmp_entity, tmp_entity_type, tmp_pos, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out)
|
| 51 |
+
elif tmp_tmp_entity_type != tmp_entity_type:
|
| 52 |
+
# if the type does not match with the B, skip
|
| 53 |
+
tmp_entity, tmp_entity_type, tmp_pos, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out)
|
| 54 |
+
else:
|
| 55 |
+
tmp_entity.append(_i)
|
| 56 |
+
tmp_pos.append(n)
|
| 57 |
+
elif _l == 'O':
|
| 58 |
+
tmp_entity, tmp_entity_type, tmp_pos, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out)
|
| 59 |
+
else:
|
| 60 |
+
raise ValueError('unknown tag: {}'.format(_l))
|
| 61 |
+
_, _, _, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out)
|
| 62 |
+
return out
|
| 63 |
+
|
| 64 |
os.makedirs("data/tweet_ner7", exist_ok=True)
|
| 65 |
data = load_dataset("tner/tweetner7")
|
| 66 |
|
|
|
|
| 69 |
tmp = [i.to_dict() for _, i in tmp.iterrows()]
|
| 70 |
for i in tmp:
|
| 71 |
i.pop("id")
|
| 72 |
+
entities = decode_ner_tags(i['tags'].tolist(), i['tokens'].tolist())
|
| 73 |
+
pprint(entities)
|
| 74 |
+
input()
|
| 75 |
i['gold_label_sequence'] = i.pop('tags').tolist()
|
| 76 |
i['text_tokenized'] = i.pop('tokens').tolist()
|
| 77 |
i['text'] = ' '.join(i['text_tokenized'])
|