# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from Levenshtein import distance as levenshtein_distance import json import argparse def calculate_metrics(pred, truth): pred_clean = pred.replace(" ", "") truth_clean = truth.replace(" ", "") correct_chars = sum(c1 == c2 for c1, c2 in zip(pred_clean, truth_clean)) char_acc = correct_chars / len(truth_clean) if len(truth_clean) > 0 else 0 edit_dist = levenshtein_distance(pred_clean, truth_clean) max_len = max(len(pred_clean), len(truth_clean)) similarity = 1 - (edit_dist / max_len) if max_len > 0 else 1 return { "char_accuracy": char_acc, "edit_distance": edit_dist, "similarity": similarity } def compare_three_values(all_samples): clear_stats = {"total_acc": 0, "total_sim": 0, "count": 0} notclear_stats = {"total_acc": 0, "total_sim": 0, "count": 0} final_stats = {"total_acc": 0, "total_sim": 0, "count": 0} for sample in all_samples: clear_metrics = calculate_metrics(sample[0]["clear Char-level OCR"], sample[1]["clear Char-level OCR"]) clear_stats["total_acc"] += clear_metrics["char_accuracy"] clear_stats["total_sim"] += clear_metrics["similarity"] clear_stats["count"] += 1 notclear_metrics = calculate_metrics(sample[0]["not clear enough Char-level OCR"], sample[1]["not clear enough Char-level OCR"]) notclear_stats["total_acc"] += notclear_metrics["char_accuracy"] notclear_stats["total_sim"] += notclear_metrics["similarity"] notclear_stats["count"] += 1 final_metrics = calculate_metrics(sample[0]["Final OCR"],sample[1]["Final OCR"]) final_stats["total_acc"] += final_metrics["char_accuracy"] final_stats["total_sim"] += final_metrics["similarity"] final_stats["count"] += 1 print({ "Clear": { "avg_accuracy": clear_stats["total_acc"] / clear_stats["count"], "avg_similarity": clear_stats["total_sim"] / clear_stats["count"] }, "NotClear": { "avg_accuracy": notclear_stats["total_acc"] / notclear_stats["count"], "avg_similarity": notclear_stats["total_sim"] / notclear_stats["count"] }, "Final": { "avg_accuracy": final_stats["total_acc"] / final_stats["count"], "avg_similarity": final_stats["total_sim"] / final_stats["count"] } }) def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument("--input_file", type=str) args = parser.parse_args() return args def main(): args = parse_arguments() with open(args.input_file, 'r') as f_in: now = [] for line in f_in: data = json.loads(line.strip()) text = data['answer'] start_tag = "" end_tag = "" start_index = text.find(start_tag) + len(start_tag) end_index = text.find(end_tag) answer_content = text[start_index:end_index].strip() parsed_json_gt = json.loads(answer_content) q = data['response'] start_tag = "" end_tag = "" start_index = q.find(start_tag) + len(start_tag) end_index = q.find(end_tag) answer_content = q[start_index:end_index].strip() answer_content = q answer_content_json = answer_content.replace("'", '"').replace("```json","").replace("```","").replace("\n","") parsed_json_pred = json.loads(answer_content_json) now.append([parsed_json_gt,parsed_json_pred]) compare_three_values(now) if __name__ == "__main__": main()