|
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{yao-etal-2019-docred, |
|
title = "{D}oc{RED}: A Large-Scale Document-Level Relation Extraction Dataset", |
|
author = "Yao, Yuan and |
|
Ye, Deming and |
|
Li, Peng and |
|
Han, Xu and |
|
Lin, Yankai and |
|
Liu, Zhenghao and |
|
Liu, Zhiyuan and |
|
Huang, Lixin and |
|
Zhou, Jie and |
|
Sun, Maosong", |
|
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P19-1074", |
|
doi = "10.18653/v1/P19-1074", |
|
pages = "764--777", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This repository is copied from https://huggingface.co/datasets/thunlp/docred and changed the files to change Re-DocRED.\ |
|
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by \ |
|
existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single \ |
|
entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed \ |
|
from Wikipedia and Wikidata with three features: |
|
- DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text. |
|
- DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document. |
|
- Along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios. |
|
""" |
|
|
|
_URLS = { |
|
"dev": "data/dev_revised.json.gz", |
|
"train": "data/train_revised.json.gz", |
|
"test": "data/test_revised.json.gz", |
|
"rel_info": "data/rel_info.json.gz", |
|
} |
|
|
|
|
|
class DocRed(datasets.GeneratorBasedBuilder): |
|
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"title": datasets.Value("string"), |
|
"sents": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), |
|
"vertexSet": [ |
|
[ |
|
{ |
|
"name": datasets.Value("string"), |
|
"sent_id": datasets.Value("int32"), |
|
"pos": datasets.features.Sequence(datasets.Value("int32")), |
|
"type": datasets.Value("string"), |
|
} |
|
] |
|
], |
|
"labels": datasets.features.Sequence( |
|
{ |
|
"head": datasets.Value("int32"), |
|
"tail": datasets.Value("int32"), |
|
"relation_id": datasets.Value("string"), |
|
"relation_text": datasets.Value("string"), |
|
"evidence": datasets.features.Sequence(datasets.Value("int32")), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/thunlp/DocRED", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloads = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": downloads["dev"], "rel_info": downloads["rel_info"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"], "rel_info": downloads["rel_info"]} |
|
), |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={"filepath": downloads["train"], "rel_info": downloads["rel_info"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, rel_info): |
|
"""Generate DocRED examples.""" |
|
|
|
with open(rel_info, encoding="utf-8") as f: |
|
relation_name_map = json.load(f) |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
for idx, example in enumerate(data): |
|
|
|
|
|
if "labels" not in example.keys(): |
|
example["labels"] = [] |
|
|
|
for label in example["labels"]: |
|
|
|
label["relation_text"] = relation_name_map[label["r"]] |
|
label["relation_id"] = label["r"] |
|
label["head"] = label["h"] |
|
label["tail"] = label["t"] |
|
del label["r"] |
|
del label["h"] |
|
del label["t"] |
|
|
|
yield idx, example |
|
|