implement viewpoint filter for Controller and Non-controllers
Browse files- bordirlines.py +74 -30
- data/queries.tsv +0 -0
bordirlines.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import json
|
|
|
2 |
from functools import lru_cache
|
3 |
|
4 |
import datasets
|
@@ -58,6 +59,7 @@ SUPPORTED_LANGUAGES = [
|
|
58 |
]
|
59 |
SYSTEMS = ["openai", "m3"]
|
60 |
MODES = ["qlang", "qlang_en", "en", "rel_langs"]
|
|
|
61 |
# # get combination of systems and supported modes
|
62 |
# SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]
|
63 |
|
@@ -83,6 +85,15 @@ def replace_lang_str(path, lang):
|
|
83 |
return f"{parent}/{lang}/{lang}_docs.json"
|
84 |
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
87 |
VERSION = datasets.Version("1.0.0")
|
88 |
|
@@ -95,14 +106,22 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
95 |
for lang in SUPPORTED_LANGUAGES
|
96 |
]
|
97 |
|
98 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
super().__init__(*args, **kwargs)
|
100 |
-
self.relevance_filter = relevance_filter
|
|
|
101 |
self.annotation_type = annotation_type
|
102 |
self.llm_mode = llm_mode # Default to "fewshot"
|
103 |
self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
|
104 |
|
105 |
-
|
106 |
def _info(self):
|
107 |
return datasets.DatasetInfo(
|
108 |
description="IR Dataset for BordIRLines paper.",
|
@@ -129,7 +148,9 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
129 |
base_url = self.config.data_root_dir
|
130 |
queries_path = f"{base_url}/queries.tsv"
|
131 |
docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
|
132 |
-
human_annotations_path = dl_manager.download_and_extract(
|
|
|
|
|
133 |
llm_annotations_path = dl_manager.download_and_extract(f"{base_url}/llm_annotations.tsv")
|
134 |
|
135 |
lang = self.config.language
|
@@ -164,11 +185,12 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
164 |
|
165 |
return splits
|
166 |
|
167 |
-
def _generate_examples(
|
|
|
|
|
168 |
n_hits = self.config.n_hits
|
169 |
-
queries_df = pd.read_csv(queries_path, sep="\t")
|
170 |
-
|
171 |
-
query_to_lang_map = dict(zip(queries_df["query_id"], queries_df["language"]))
|
172 |
counter = 0
|
173 |
|
174 |
docs = load_json(docs_path)
|
@@ -176,7 +198,7 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
176 |
hits = pd.read_csv(hits_path, sep="\t")
|
177 |
human_annotations = pd.read_csv(human_annotations_path, sep="\t")
|
178 |
llm_annotations = pd.read_csv(llm_annotations_path, sep="\t")
|
179 |
-
|
180 |
if n_hits:
|
181 |
hits = hits.groupby("query_id").head(n_hits)
|
182 |
|
@@ -192,40 +214,62 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
192 |
doc_id = row["doc_id"]
|
193 |
doc_lang = row["doc_lang"]
|
194 |
query_id = row["query_id"]
|
195 |
-
|
196 |
-
|
|
|
197 |
|
198 |
# Get Human Data
|
199 |
human_data = human_map.get((query_id, doc_id), {})
|
200 |
|
201 |
-
relevant_human = human_data.get("relevant",
|
202 |
-
viewpoint_human = human_data.get("territory",
|
203 |
|
204 |
# Get LLM Data
|
205 |
llm_data = llm_map.get((query_id, doc_id), {})
|
206 |
relevant_llm = (
|
207 |
-
llm_data
|
208 |
if self.llm_mode == "fewshot"
|
209 |
-
else llm_data
|
210 |
)
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
continue
|
218 |
-
|
|
|
|
|
219 |
continue
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
continue
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
continue
|
228 |
-
|
|
|
|
|
229 |
continue
|
230 |
|
231 |
# If "all", do not filter anything
|
@@ -244,8 +288,8 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
244 |
"doc_lang": doc_lang,
|
245 |
"relevant_human": relevant_human,
|
246 |
"viewpoint": viewpoint,
|
247 |
-
"relevant_llm_zeroshot": llm_data
|
248 |
-
"relevant_llm_fewshot": llm_data
|
249 |
},
|
250 |
)
|
251 |
counter += 1
|
|
|
1 |
import json
|
2 |
+
from copy import copy
|
3 |
from functools import lru_cache
|
4 |
|
5 |
import datasets
|
|
|
59 |
]
|
60 |
SYSTEMS = ["openai", "m3"]
|
61 |
MODES = ["qlang", "qlang_en", "en", "rel_langs"]
|
62 |
+
RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"]
|
63 |
# # get combination of systems and supported modes
|
64 |
# SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]
|
65 |
|
|
|
85 |
return f"{parent}/{lang}/{lang}_docs.json"
|
86 |
|
87 |
|
88 |
+
def get_label(human_bool, llm_bool, annotation_type):
|
89 |
+
if annotation_type == "human":
|
90 |
+
return human_bool
|
91 |
+
elif annotation_type == "llm":
|
92 |
+
return llm_bool
|
93 |
+
else:
|
94 |
+
return human_bool if human_bool is not None else llm_bool
|
95 |
+
|
96 |
+
|
97 |
class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
98 |
VERSION = datasets.Version("1.0.0")
|
99 |
|
|
|
106 |
for lang in SUPPORTED_LANGUAGES
|
107 |
]
|
108 |
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
*args,
|
112 |
+
relevance_filter="all",
|
113 |
+
annotation_type=None,
|
114 |
+
llm_mode="fewshot",
|
115 |
+
viewpoint_filter=None,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
super().__init__(*args, **kwargs)
|
119 |
+
self.relevance_filter = relevance_filter
|
120 |
+
assert self.relevance_filter in RELEVANCE_FILTERS
|
121 |
self.annotation_type = annotation_type
|
122 |
self.llm_mode = llm_mode # Default to "fewshot"
|
123 |
self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
|
124 |
|
|
|
125 |
def _info(self):
|
126 |
return datasets.DatasetInfo(
|
127 |
description="IR Dataset for BordIRLines paper.",
|
|
|
148 |
base_url = self.config.data_root_dir
|
149 |
queries_path = f"{base_url}/queries.tsv"
|
150 |
docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
|
151 |
+
human_annotations_path = dl_manager.download_and_extract(
|
152 |
+
f"{base_url}/human_annotations.tsv"
|
153 |
+
)
|
154 |
llm_annotations_path = dl_manager.download_and_extract(f"{base_url}/llm_annotations.tsv")
|
155 |
|
156 |
lang = self.config.language
|
|
|
185 |
|
186 |
return splits
|
187 |
|
188 |
+
def _generate_examples(
|
189 |
+
self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path
|
190 |
+
):
|
191 |
n_hits = self.config.n_hits
|
192 |
+
queries_df = pd.read_csv(queries_path, sep="\t").set_index("query_id")
|
193 |
+
queries_df["Claimants"] = queries_df["Claimants"].str.split(";").map(set)
|
|
|
194 |
counter = 0
|
195 |
|
196 |
docs = load_json(docs_path)
|
|
|
198 |
hits = pd.read_csv(hits_path, sep="\t")
|
199 |
human_annotations = pd.read_csv(human_annotations_path, sep="\t")
|
200 |
llm_annotations = pd.read_csv(llm_annotations_path, sep="\t")
|
201 |
+
|
202 |
if n_hits:
|
203 |
hits = hits.groupby("query_id").head(n_hits)
|
204 |
|
|
|
214 |
doc_id = row["doc_id"]
|
215 |
doc_lang = row["doc_lang"]
|
216 |
query_id = row["query_id"]
|
217 |
+
query_entry = queries_df.loc[query_id]
|
218 |
+
query_text = query_entry["query_text"]
|
219 |
+
query_lang = query_entry["language"]
|
220 |
|
221 |
# Get Human Data
|
222 |
human_data = human_map.get((query_id, doc_id), {})
|
223 |
|
224 |
+
relevant_human = human_data.get("relevant", None)
|
225 |
+
viewpoint_human = human_data.get("territory", None)
|
226 |
|
227 |
# Get LLM Data
|
228 |
llm_data = llm_map.get((query_id, doc_id), {})
|
229 |
relevant_llm = (
|
230 |
+
llm_data["relevant_fewshot"]
|
231 |
if self.llm_mode == "fewshot"
|
232 |
+
else llm_data["relevant_zeroshot"]
|
233 |
)
|
234 |
+
viewpoint_llm = (
|
235 |
+
llm_data["territory_fewshot"]
|
236 |
+
if self.llm_mode == "fewshot"
|
237 |
+
else llm_data["territory_zeroshot"]
|
238 |
+
)
|
239 |
+
|
240 |
+
# Filtering logic based on viewpoint preference
|
241 |
+
viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None
|
242 |
+
|
243 |
+
viewpoint = get_label(viewpoint_human, viewpoint_llm, self.annotation_type)
|
244 |
+
if viewpoint is None:
|
245 |
+
continue
|
246 |
+
|
247 |
+
if self.viewpoint_filter == "Non-controllers":
|
248 |
+
controller = query_entry["Controller"]
|
249 |
+
if controller == "Unknown":
|
250 |
continue
|
251 |
+
claimants = copy(query_entry["Claimants"])
|
252 |
+
claimants.remove(controller)
|
253 |
+
if not len(claimants) or viewpoint not in claimants:
|
254 |
continue
|
255 |
+
else:
|
256 |
+
if self.viewpoint_filter == "Controller":
|
257 |
+
controller = query_entry["Controller"]
|
258 |
+
target_viewpoint = controller
|
259 |
+
else:
|
260 |
+
target_viewpoint = self.viewpoint_filter
|
261 |
+
|
262 |
+
if target_viewpoint and viewpoint != target_viewpoint:
|
263 |
continue
|
264 |
|
265 |
+
# Filtering logic based on relevance preference
|
266 |
+
relevant = get_label(relevant_human, relevant_llm, self.annotation_type)
|
267 |
+
if self.relevance_filter == "relevant":
|
268 |
+
if not relevant:
|
269 |
continue
|
270 |
+
|
271 |
+
elif self.relevance_filter == "non-relevant":
|
272 |
+
if relevant:
|
273 |
continue
|
274 |
|
275 |
# If "all", do not filter anything
|
|
|
288 |
"doc_lang": doc_lang,
|
289 |
"relevant_human": relevant_human,
|
290 |
"viewpoint": viewpoint,
|
291 |
+
"relevant_llm_zeroshot": llm_data["relevant_zeroshot"],
|
292 |
+
"relevant_llm_fewshot": llm_data["relevant_fewshot"],
|
293 |
},
|
294 |
)
|
295 |
counter += 1
|
data/queries.tsv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|