Datasets:

ArXiv:
License:
manestay commited on
Commit
b3a0adc
·
1 Parent(s): e560636

implement viewpoint filter for Controller and Non-controllers

Browse files
Files changed (2) hide show
  1. bordirlines.py +74 -30
  2. data/queries.tsv +0 -0
bordirlines.py CHANGED
@@ -1,4 +1,5 @@
1
  import json
 
2
  from functools import lru_cache
3
 
4
  import datasets
@@ -58,6 +59,7 @@ SUPPORTED_LANGUAGES = [
58
  ]
59
  SYSTEMS = ["openai", "m3"]
60
  MODES = ["qlang", "qlang_en", "en", "rel_langs"]
 
61
  # # get combination of systems and supported modes
62
  # SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]
63
 
@@ -83,6 +85,15 @@ def replace_lang_str(path, lang):
83
  return f"{parent}/{lang}/{lang}_docs.json"
84
 
85
 
 
 
 
 
 
 
 
 
 
86
  class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
87
  VERSION = datasets.Version("1.0.0")
88
 
@@ -95,14 +106,22 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
95
  for lang in SUPPORTED_LANGUAGES
96
  ]
97
 
98
- def __init__(self, *args, relevance_filter="all", annotation_type=None, llm_mode="fewshot", viewpoint_filter=None, **kwargs):
 
 
 
 
 
 
 
 
99
  super().__init__(*args, **kwargs)
100
- self.relevance_filter = relevance_filter # "relevant", "non-relevant", or "all"
 
101
  self.annotation_type = annotation_type
102
  self.llm_mode = llm_mode # Default to "fewshot"
103
  self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
104
 
105
-
106
  def _info(self):
107
  return datasets.DatasetInfo(
108
  description="IR Dataset for BordIRLines paper.",
@@ -129,7 +148,9 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
129
  base_url = self.config.data_root_dir
130
  queries_path = f"{base_url}/queries.tsv"
131
  docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
132
- human_annotations_path = dl_manager.download_and_extract(f"{base_url}/human_annotations.tsv")
 
 
133
  llm_annotations_path = dl_manager.download_and_extract(f"{base_url}/llm_annotations.tsv")
134
 
135
  lang = self.config.language
@@ -164,11 +185,12 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
164
 
165
  return splits
166
 
167
- def _generate_examples(self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path):
 
 
168
  n_hits = self.config.n_hits
169
- queries_df = pd.read_csv(queries_path, sep="\t")
170
- query_map = dict(zip(queries_df["query_id"], queries_df["query_text"]))
171
- query_to_lang_map = dict(zip(queries_df["query_id"], queries_df["language"]))
172
  counter = 0
173
 
174
  docs = load_json(docs_path)
@@ -176,7 +198,7 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
176
  hits = pd.read_csv(hits_path, sep="\t")
177
  human_annotations = pd.read_csv(human_annotations_path, sep="\t")
178
  llm_annotations = pd.read_csv(llm_annotations_path, sep="\t")
179
-
180
  if n_hits:
181
  hits = hits.groupby("query_id").head(n_hits)
182
 
@@ -192,40 +214,62 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
192
  doc_id = row["doc_id"]
193
  doc_lang = row["doc_lang"]
194
  query_id = row["query_id"]
195
- query_text = query_map[query_id]
196
- query_lang = query_to_lang_map[query_id]
 
197
 
198
  # Get Human Data
199
  human_data = human_map.get((query_id, doc_id), {})
200
 
201
- relevant_human = human_data.get("relevant", False)
202
- viewpoint_human = human_data.get("territory", "")
203
 
204
  # Get LLM Data
205
  llm_data = llm_map.get((query_id, doc_id), {})
206
  relevant_llm = (
207
- llm_data.get("relevant_fewshot", None)
208
  if self.llm_mode == "fewshot"
209
- else llm_data.get("relevant_zeroshot", None)
210
  )
211
- viewpoint = viewpoint_human
212
- if self.viewpoint_filter and self.viewpoint_filter not in viewpoint:
213
- continue
214
- # Filtering logic based on relevance preference
215
- if self.relevance_filter == "relevant":
216
- if self.annotation_type == "human" and not relevant_human:
 
 
 
 
 
 
 
 
 
 
217
  continue
218
- elif self.annotation_type == "llm" and not (relevant_llm is True):
 
 
219
  continue
220
- elif not relevant_human and not (relevant_llm is True):
 
 
 
 
 
 
 
221
  continue
222
 
223
- elif self.relevance_filter == "non-relevant":
224
- if self.annotation_type == "human" and relevant_human:
225
- continue
226
- elif self.annotation_type == "llm" and relevant_llm is True:
227
  continue
228
- elif relevant_human or relevant_llm is True:
 
 
229
  continue
230
 
231
  # If "all", do not filter anything
@@ -244,8 +288,8 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
244
  "doc_lang": doc_lang,
245
  "relevant_human": relevant_human,
246
  "viewpoint": viewpoint,
247
- "relevant_llm_zeroshot": llm_data.get("relevant_zeroshot", None),
248
- "relevant_llm_fewshot": llm_data.get("relevant_fewshot", None),
249
  },
250
  )
251
  counter += 1
 
1
  import json
2
+ from copy import copy
3
  from functools import lru_cache
4
 
5
  import datasets
 
59
  ]
60
  SYSTEMS = ["openai", "m3"]
61
  MODES = ["qlang", "qlang_en", "en", "rel_langs"]
62
+ RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"]
63
  # # get combination of systems and supported modes
64
  # SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]
65
 
 
85
  return f"{parent}/{lang}/{lang}_docs.json"
86
 
87
 
88
+ def get_label(human_bool, llm_bool, annotation_type):
89
+ if annotation_type == "human":
90
+ return human_bool
91
+ elif annotation_type == "llm":
92
+ return llm_bool
93
+ else:
94
+ return human_bool if human_bool is not None else llm_bool
95
+
96
+
97
  class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
98
  VERSION = datasets.Version("1.0.0")
99
 
 
106
  for lang in SUPPORTED_LANGUAGES
107
  ]
108
 
109
+ def __init__(
110
+ self,
111
+ *args,
112
+ relevance_filter="all",
113
+ annotation_type=None,
114
+ llm_mode="fewshot",
115
+ viewpoint_filter=None,
116
+ **kwargs,
117
+ ):
118
  super().__init__(*args, **kwargs)
119
+ self.relevance_filter = relevance_filter
120
+ assert self.relevance_filter in RELEVANCE_FILTERS
121
  self.annotation_type = annotation_type
122
  self.llm_mode = llm_mode # Default to "fewshot"
123
  self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
124
 
 
125
  def _info(self):
126
  return datasets.DatasetInfo(
127
  description="IR Dataset for BordIRLines paper.",
 
148
  base_url = self.config.data_root_dir
149
  queries_path = f"{base_url}/queries.tsv"
150
  docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
151
+ human_annotations_path = dl_manager.download_and_extract(
152
+ f"{base_url}/human_annotations.tsv"
153
+ )
154
  llm_annotations_path = dl_manager.download_and_extract(f"{base_url}/llm_annotations.tsv")
155
 
156
  lang = self.config.language
 
185
 
186
  return splits
187
 
188
+ def _generate_examples(
189
+ self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path
190
+ ):
191
  n_hits = self.config.n_hits
192
+ queries_df = pd.read_csv(queries_path, sep="\t").set_index("query_id")
193
+ queries_df["Claimants"] = queries_df["Claimants"].str.split(";").map(set)
 
194
  counter = 0
195
 
196
  docs = load_json(docs_path)
 
198
  hits = pd.read_csv(hits_path, sep="\t")
199
  human_annotations = pd.read_csv(human_annotations_path, sep="\t")
200
  llm_annotations = pd.read_csv(llm_annotations_path, sep="\t")
201
+
202
  if n_hits:
203
  hits = hits.groupby("query_id").head(n_hits)
204
 
 
214
  doc_id = row["doc_id"]
215
  doc_lang = row["doc_lang"]
216
  query_id = row["query_id"]
217
+ query_entry = queries_df.loc[query_id]
218
+ query_text = query_entry["query_text"]
219
+ query_lang = query_entry["language"]
220
 
221
  # Get Human Data
222
  human_data = human_map.get((query_id, doc_id), {})
223
 
224
+ relevant_human = human_data.get("relevant", None)
225
+ viewpoint_human = human_data.get("territory", None)
226
 
227
  # Get LLM Data
228
  llm_data = llm_map.get((query_id, doc_id), {})
229
  relevant_llm = (
230
+ llm_data["relevant_fewshot"]
231
  if self.llm_mode == "fewshot"
232
+ else llm_data["relevant_zeroshot"]
233
  )
234
+ viewpoint_llm = (
235
+ llm_data["territory_fewshot"]
236
+ if self.llm_mode == "fewshot"
237
+ else llm_data["territory_zeroshot"]
238
+ )
239
+
240
+ # Filtering logic based on viewpoint preference
241
+ viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None
242
+
243
+ viewpoint = get_label(viewpoint_human, viewpoint_llm, self.annotation_type)
244
+ if viewpoint is None:
245
+ continue
246
+
247
+ if self.viewpoint_filter == "Non-controllers":
248
+ controller = query_entry["Controller"]
249
+ if controller == "Unknown":
250
  continue
251
+ claimants = copy(query_entry["Claimants"])
252
+ claimants.remove(controller)
253
+ if not len(claimants) or viewpoint not in claimants:
254
  continue
255
+ else:
256
+ if self.viewpoint_filter == "Controller":
257
+ controller = query_entry["Controller"]
258
+ target_viewpoint = controller
259
+ else:
260
+ target_viewpoint = self.viewpoint_filter
261
+
262
+ if target_viewpoint and viewpoint != target_viewpoint:
263
  continue
264
 
265
+ # Filtering logic based on relevance preference
266
+ relevant = get_label(relevant_human, relevant_llm, self.annotation_type)
267
+ if self.relevance_filter == "relevant":
268
+ if not relevant:
269
  continue
270
+
271
+ elif self.relevance_filter == "non-relevant":
272
+ if relevant:
273
  continue
274
 
275
  # If "all", do not filter anything
 
288
  "doc_lang": doc_lang,
289
  "relevant_human": relevant_human,
290
  "viewpoint": viewpoint,
291
+ "relevant_llm_zeroshot": llm_data["relevant_zeroshot"],
292
+ "relevant_llm_fewshot": llm_data["relevant_fewshot"],
293
  },
294
  )
295
  counter += 1
data/queries.tsv CHANGED
The diff for this file is too large to render. See raw diff