|
import json |
|
from copy import copy |
|
from functools import lru_cache |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
SUPPORTED_LANGUAGES = [ |
|
"sl", |
|
"ur", |
|
"sw", |
|
"uz", |
|
"vi", |
|
"sq", |
|
"ms", |
|
"km", |
|
"hy", |
|
"da", |
|
"ky", |
|
"mg", |
|
"mn", |
|
"ja", |
|
"el", |
|
"it", |
|
"is", |
|
"ru", |
|
"tl", |
|
"so", |
|
"pt", |
|
"uk", |
|
"sr", |
|
"sn", |
|
"ht", |
|
"bs", |
|
"my", |
|
"ar", |
|
"hr", |
|
"nl", |
|
"bn", |
|
"ne", |
|
"hi", |
|
"ka", |
|
"az", |
|
"ko", |
|
"id", |
|
"fr", |
|
"es", |
|
"en", |
|
"fa", |
|
"lo", |
|
"iw", |
|
"th", |
|
"tr", |
|
"zht", |
|
"zhs", |
|
"ti", |
|
"tg", |
|
"control", |
|
] |
|
SYSTEMS = ["openai", "m3"] |
|
MODES = ["qlang", "qlang_en", "en", "rel_langs"] |
|
RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"] |
|
LLM_MODES = ["zeroshot", "fewshot"] |
|
|
|
ROOT_DIR = "data" |
|
|
|
|
|
class BordIRlinesConfig(datasets.BuilderConfig): |
|
def __init__(self, language, n_hits=10, **kwargs): |
|
super(BordIRlinesConfig, self).__init__(**kwargs) |
|
self.language = language |
|
self.n_hits = n_hits |
|
self.data_root_dir = ROOT_DIR |
|
|
|
|
|
def load_json(path): |
|
with open(path, "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
|
|
|
|
@lru_cache |
|
def replace_lang_str(path, lang): |
|
parent = path.rsplit("/", 2)[0] |
|
return f"{parent}/{lang}/{lang}_docs.json" |
|
|
|
|
|
def get_label(human_bool, llm_bool, annotation_type): |
|
if annotation_type == "human": |
|
return human_bool |
|
elif annotation_type == "llm": |
|
return llm_bool |
|
else: |
|
return human_bool if human_bool is not None else llm_bool |
|
|
|
|
|
class BordIRLinesDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
BordIRlinesConfig( |
|
name=lang, |
|
language=lang, |
|
description=f"{lang.upper()} dataset", |
|
) |
|
for lang in SUPPORTED_LANGUAGES |
|
] |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
relevance_filter="all", |
|
annotation_type=None, |
|
llm_mode="fewshot", |
|
viewpoint_filter=None, |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
self.relevance_filter = relevance_filter |
|
assert self.relevance_filter in RELEVANCE_FILTERS |
|
self.annotation_type = annotation_type |
|
self.llm_mode = llm_mode |
|
assert self.llm_mode in LLM_MODES |
|
self.viewpoint_filter = viewpoint_filter |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="IR Dataset for BordIRLines paper.", |
|
features=datasets.Features( |
|
{ |
|
"query_id": datasets.Value("string"), |
|
"query": datasets.Value("string"), |
|
"query_lang": datasets.Value("string"), |
|
"territory": datasets.Value("string"), |
|
"rank": datasets.Value("int32"), |
|
"score": datasets.Value("float32"), |
|
"doc_id": datasets.Value("string"), |
|
"doc_text": datasets.Value("string"), |
|
"doc_lang": datasets.Value("string"), |
|
"viewpoint_human": datasets.Value("string"), |
|
"viewpoint_llm": datasets.Value("string"), |
|
"relevant_human": datasets.Value("bool"), |
|
"relevant_llm": datasets.Value("bool"), |
|
} |
|
), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
base_url = self.config.data_root_dir |
|
queries_path = f"{base_url}/queries.tsv" |
|
docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json") |
|
human_annotations_path = dl_manager.download_and_extract( |
|
f"{base_url}/human_annotations.tsv" |
|
) |
|
llm_annotations_path = dl_manager.download_and_extract(f"{base_url}/llm_annotations.tsv") |
|
|
|
lang = self.config.language |
|
|
|
splits = [] |
|
downloaded_data = {} |
|
|
|
for system in SYSTEMS: |
|
for mode in MODES: |
|
source = f"{system}.{mode}" |
|
downloaded_data[source] = dl_manager.download_and_extract( |
|
{ |
|
"hits": f"{base_url}/{lang}/{system}/{mode}/{lang}_query_hits.tsv", |
|
"docs": docs_path, |
|
"queries": queries_path, |
|
"human_annotations": human_annotations_path, |
|
"llm_annotations": llm_annotations_path, |
|
} |
|
) |
|
|
|
split = datasets.SplitGenerator( |
|
name=f"{system}.{mode}", |
|
gen_kwargs={ |
|
"hits_path": downloaded_data[source]["hits"], |
|
"docs_path": downloaded_data[source]["docs"], |
|
"queries_path": downloaded_data[source]["queries"], |
|
"human_annotations_path": downloaded_data[source]["human_annotations"], |
|
"llm_annotations_path": downloaded_data[source]["llm_annotations"], |
|
}, |
|
) |
|
splits.append(split) |
|
|
|
return splits |
|
|
|
def _skip_viewpoint(self, viewpoint_human, viewpoint_llm, query_entry): |
|
viewpoint = get_label(viewpoint_human, viewpoint_llm, self.annotation_type) |
|
if viewpoint is None: |
|
return True |
|
|
|
if self.viewpoint_filter == "Non-controllers": |
|
controller = query_entry["Controller"] |
|
if controller == "Unknown": |
|
return True |
|
|
|
claimants = copy(query_entry["Claimants"]) |
|
claimants.remove(controller) |
|
return ( |
|
not claimants or viewpoint not in claimants |
|
) |
|
|
|
|
|
target_viewpoint = ( |
|
query_entry["Controller"] |
|
if self.viewpoint_filter == "Controller" |
|
else self.viewpoint_filter |
|
) |
|
|
|
return target_viewpoint and viewpoint != target_viewpoint |
|
|
|
def _skip_relevance(self, relevant_human, relevant_llm): |
|
|
|
relevant = get_label(relevant_human, relevant_llm, self.annotation_type) |
|
target_relevant = {"relevant": True, "non-relevant": False}.get(self.relevance_filter, None) |
|
return target_relevant is not None and relevant != target_relevant |
|
|
|
|
|
def _generate_examples( |
|
self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path |
|
): |
|
n_hits = self.config.n_hits |
|
queries_df = pd.read_csv(queries_path, sep="\t").set_index("query_id") |
|
queries_df["Claimants"] = queries_df["Claimants"].str.split(";").map(set) |
|
counter = 0 |
|
|
|
docs = load_json(docs_path) |
|
|
|
hits = pd.read_csv(hits_path, sep="\t") |
|
human_annotations = pd.read_csv(human_annotations_path, sep="\t") |
|
llm_annotations = pd.read_csv(llm_annotations_path, sep="\t") |
|
|
|
if n_hits: |
|
hits = hits.groupby("query_id").head(n_hits) |
|
|
|
|
|
hits["query_id_int"] = hits["query_id"].str[1:].astype(int) |
|
hits = hits.sort_values(by=["query_id_int", "rank"]) |
|
hits = hits.drop(columns=["query_id_int"]) |
|
|
|
human_map = human_annotations.set_index(["query_id", "doc_id"]).to_dict(orient="index") |
|
llm_map = llm_annotations.set_index(["query_id", "doc_id"]).to_dict(orient="index") |
|
|
|
for _, row in hits.iterrows(): |
|
doc_id = row["doc_id"] |
|
doc_lang = row["doc_lang"] |
|
query_id = row["query_id"] |
|
query_entry = queries_df.loc[query_id] |
|
query_text = query_entry["query_text"] |
|
query_lang = query_entry["language"] |
|
|
|
|
|
human_data = human_map.get((query_id, doc_id), {}) |
|
|
|
relevant_human = human_data.get("relevant", None) |
|
viewpoint_human = human_data.get("territory", None) |
|
|
|
|
|
llm_data = llm_map.get((query_id, doc_id), {}) |
|
relevant_llm = llm_data[f"relevant_{self.llm_mode}"] |
|
viewpoint_llm = llm_data[f"territory_{self.llm_mode}"] |
|
|
|
viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None |
|
|
|
if self.viewpoint_filter: |
|
do_skip = self._skip_viewpoint(viewpoint_human, viewpoint_llm, query_entry) |
|
if do_skip: |
|
continue |
|
|
|
if self.relevance_filter != "all": |
|
do_skip = self._skip_relevance(relevant_human, relevant_llm) |
|
if do_skip: |
|
continue |
|
|
|
yield ( |
|
counter, |
|
{ |
|
"query_id": query_id, |
|
"query": query_text, |
|
"query_lang": query_lang, |
|
"territory": row["territory"], |
|
"rank": row["rank"], |
|
"score": row["score"], |
|
"doc_id": doc_id, |
|
"doc_text": docs[doc_lang][doc_id], |
|
"doc_lang": doc_lang, |
|
"viewpoint_human": viewpoint_human, |
|
"viewpoint_llm": viewpoint_llm, |
|
"relevant_human": relevant_human, |
|
"relevant_llm": relevant_llm, |
|
}, |
|
) |
|
counter += 1 |
|
|